

GOVERNMENT OF TAMIL NADU DEPARTMENT OF TECHNICAL EDUCATION

Diploma in Petrochemical Engineering Regular Curriculum

Regulation 2023 Program Structure

1075 Diploma in Petrochemical Engineering

Program Outcomes (PO's)

POs are statements that describe what students are expected to know and be able to do upon graduating from the program. These relate to the skills, knowledge, analytical ability attitude, and behavior that students acquire through the program.

The POs essentially indicate what the students can do from subject-wise knowledge acquired by them during the program. As such, POs define the professional profile of an engineering diploma graduate.

NBA has defined the following seven POs for an Engineering diploma graduate:

P01: Basic and Discipline-specific knowledge: Apply knowledge of basic mathematics, science and engineering fundamentals and an engineering specialization to solve the engineering problems.

PO2: Problem analysis: Identify and analyze well-defined engineering problems using codified standard methods.

PO3: Design/ development of solutions: Design solutions for well-defined technical problems and assist with the design of systems components or processes to meet specified needs.

P04: Engineering Tools, Experimentation, and Testing: Apply modern engineering tools and appropriate technique to conduct standard tests and measurements.

P05: Engineering practices for society, sustainability and environment: Apply appropriate technology in the context of society, sustainability, environment and ethical practices.

PO6: Project Management: Use engineering management principles individually, as a team member or as a leader to manage projects and effectively communicate about well-defined engineering activities.

PO7: Life-long learning: Ability to analyze individual needs and engage in updating in the context of technological changes.

Credit Distribution

Semester	No of Courses	Periods	Credits
Semester I	8	640	20
Semester II	9	640	20
Semester III	8	640	20
Semester IV	7	640	20
Semester V	8	635#	21
Semester VI	3	660	19
		Total	120

Industrial Training during summer vacation for Two Weeks has to be completed to earn the required two credits.

Semester I

#	Course Category	Course Type	Course Code	Course Title	L-T-P	Period	Credit	End Exam
1	Humanities & Social Science	Theory	1000231110	Tamil Marabu	2-0-0	30	2	Theory
2	Basic Science	Theory	1000231210	Basic Mathematics	3-1-0	60	4	Theory
3	Basic Science	Practicum	1000231330	Basic Physics	2-0-2	60	3	Theory
4	Basic Science	Practicum	1000231430	Basic Chemistry	2-0-2	60	3	Theory
5	Humanities & Social Science	Practicum	1000231540	Communicative English I	1-0-2	45	2	Practical
6	Engineering Science	Practicum	1000231640	Basic Workshop Practices	1-0-2	45	2	Practical
7	Engineering Science	Practicum	1000231740	Digital Workplace Skills	0-0-4	60	2	Practical
8	Open Elective	Advanced Skill Certification	1000231860	Basic English for Employability	0-0-4	60	2	Practical
9	Humanities & Social Science	Integrated Learning Experience	1000231880	Growth Lab	-	15	0	-
10	Audit Course	Integrated Learning Experience	1000231881	Induction Program - I	-	40	0	-
11	Audit Course	Integrated Learning Experience	1000231882	I&E / Club Activity / Community Initiatives	-	30	0	-
12	Audit Course	Integrated Learning Experience	1000231883	Shop floor Immersion	-	8	0	-
13	Audit Course	Integrated Learning Experience	1000231884-	Student-Led Initiative	-	22	0	-
14	Audit Course	Integrated Learning Experience	1000231886	Health & Wellness	-	30	0	-
			565	20				

Note: Test & Revisions – 60 Periods / Library Hours – 15 Periods

Semester II

#	Course Category	Course Type	Course Code	Course Title	L-T-P	Period	Credit	End Exam
1	Humanities & Social Science	Theory	1000232110	Tamil and Technology	2-0-0	30	2	Theory
2	Program Core	Theory	1075232210	Basics of petrochemicals	3-0-0	45	3	Theory
3	Basic Science	Practicum	1000232340	Applied Mathematics – 1 *	1-0-4	75	3	Practical
4	Basic Science	Practicum	1000232440	Applied Physics – 1 *	1-0-2	45	2	Practical
5	Basic Science	Practicum	1000232540	Applied Chemistry – 1 *	1-0-2	45	2	Practical
6	Basic Science	Practicum	1000232640	Basic Engineering Practices *	1-0-2	45	2	Practical
7	Engineering Science	Lab	1000232720	Drafting Practices – 1 *	0-0-4	60	2	Practical
8	Humanities & Social Science	Practicum	1000232840	Communicative English II *	1-0-2	45	2	Practical
9	Open Elective	Advanced Skill Certification	1000232860	Advanced Skills Certification $-2*$	1-0-2	45	2	NA
10	Humanities & Social Science	Integrated Learning Experience	1000232880	Growth Lab	-	30	0	-
11	Audit Course	Integrated Learning Experience	1000232882	I&E/ Club Activity / Community Initiatives	-	30	0	-
12	Audit Course	Integrated Learning Experience	1000232883	Shop Floor Immersion	-	8	0	-
13	Audit Course	Integrated Learning Experience	1000232884	Student Led Initiative	-	24	0	-
14	Audit Course	Integrated Learning Experience	1000232885	Emerging Technology Seminars	-	8	0	-
15	Audit Course	Integrated Learning Experience	1000232886	Health & Wellness	-	30	0	_
		565	20					

Note: Test & Revisions – 60 Periods / Library Hours – 15 Periods

Semester III

#	Course Category	Course Type	Course Code	Course Title	L-T-P	Period	Credit	End Exam
1	Program Core	Theory	1075233110	Petroleum Refining	4-0-0	60	4	Theory
2	Program Core	Theory	1076233210	Momentum Transfer*	3-1-0	60	4	Theory
3	Program Core	Practical	1076233320	Momentum Transfer Practical*	0-0-4	60	2	Practical
4	Program Core	Practical	1076233420	Chemical CAD Practical*	0-0-4	60	2	Practical
5	Program Core	Practical	1075233520	Distillate Testing Practical	0-0-4	60	2	Practical
6	Program Core	Practicum	1076233640	General Engineering*	1-0-4	75	3	Practical
7	Open Elective	Advanced Skill Certification	1075233760	Advanced Skills Certification-III	1-0-3	60	2	NA
8	Humanities & Social Science	Integrated Learning Experience	1075233880	Growth Lab	-	30	0	NA
9	Audit Course	Integrated Learning Experience	1075233881	Induction Program - II	-	16	0	
10	Audit Course	Integrated Learning Experience	1075233882	I&E / Club Activity / Community Initiatives	-	16	0	-
11	Audit Course	Integrated Learning Experience	1075233883	Shop floor Immersion	-	8	0	
12	Audit Course	Integrated Learning Experience	1075233884	Student – Led Initiative	-	22	0	-
13	Audit Course	Integrated Learning Experience	1075233885	Emerging Technology Seminars	-	8	0	-
14	Audit Course	Integrated Learning Experience	1075233886	Health & Wellness	0-0-2	30	1	-
	Total							

Note: Test & Revisions – 60 / Library Hours – 15 Periods # Common with all programs * Common with Chemical Engineering Program

Semester IV

#	Course Category	Course Type	Course Code	Course Title	L-T-P	Period	Credit	End Exam
1	Program Core	Theory	1076234110	Process Heat Transfer*	3-1-0	60	4	Theory
2	Program Core	Theory	1076234210	Mechanical Operations*	3-1-0	60	4	Theory
3	Program Core	Theory	1075234310	Petrochemical Technology	3-0-0	45	3	Theory
4	Program Core	Practical	1076234420	Heat Transfer Practical*	0-0-4	60	2	Practical
5	Program Core	Practical	1076234520	Mechanical Operations Practical*	0-0-4	60	2	Practical
6	Program Core	Practicum	1076234640	Process Instrumentation and Control*	1-0-4	75	3	Practical
7	Open Elective	Advanced Skill Certification	1075234760	Advanced Skills Certification - IV	1-0-3	60	2	NA
8	Audit Course	Integrated Learning Experience	1075233882	I&E/ Club Activity/ Community Initiatives	-	30	0	-
9	Audit Course	Integrated Learning Experience	1075233883	Shop floor Immersion	-	8	0	-
10	Audit Course	Integrated Learning Experience	1075233884	Student-Led Initiative	-	24	0	-
11	Audit Course	Integrated Learning Experience	1075233885	Emerging Technology Seminars	-	8	0	-
12	Audit Course	Integrated Learning Experience	1075233886	Health & Wellness	-	30	0	-
13	Audit Course	Integrated Learning Experience	1075233887	Special Interest Groups (Placement Training)	-	30	0	-
			Total			550	20	

Note: Test & Revisions – 75 Periods / Library – 15 Periods # Common with all programs * Common with Chemical Engineering Program

Semester V

#	Course Category	Course Type	Course Code	Course Title	L-T-P	Period	Credit	End Exam
1	Program Core	Theory	1076235110	Chemical Process Calculations*	3-1-0	60	4	Theory
2	Program Core	Theory	1075235210	Refinery Mass Transfer	3-1-0	60	4	Theory
3	Program Elective	Theory	-	Elective-1	3-0-0	45	3	Theory
4	Program Core	Practical	1076235420	Mass Transfer Practical*	0-0-4	60	2	Practical
5	Program Elective	Practical	-	Elective-2	0-0-4	60	2	Practical
6	Humanities &Social Science	Practicum	1075235654	Innovation & Start up	1-0-2	45	2	Project
7	Project/Internship	Project/Internship	1075235773	Industrial Training [Summer Vacation]	-	-	2	Project
8	Open Elective	Advanced Skill Certification	1075235860	Advanced Skills Certification – V	1-0-3	60	2	NA
9	Audit Course	Integrated Learning Experience	1075235881	Induction program III	-	40	0	-
10	Audit Course	Integrated Learning Experience	1075235884	Student-Led Initiative	-	30	0	-
11	Audit Course	Integrated Learning Experience	1075235886	Health & Wellness	_	30	0	-
12	Audit Course	Integrated Learning Experience	1075235987	Special Interest Groups (Placement Training)	-	40	0	-
			530	21				

Note: Test & Revisions – 90 Periods / Library – 15 Periods # Common with all programs * Common with Chemical Engineering Program.

* Internship shall be offered in the summer break between 4th and 5th semester followed by a review and award of credits in the 5th semester.

Semester VI

#	Course Category	Course Type	Course Code	Course Title	L-T-P	Period	Credit	End Exam
1	Open Elective	Theory	-	ELECTIVE 3	3-0-0	45	3	Theory
2	Open Elective	Theory	-	ELECTIVE 4	3-1-0	60	4	Theory
3	Industrial Training/Project	Project / Internship	1075236352	In – house Project / Internship / Fellowship	-	540	12	Project
	Total						19	

Note:

- 1. Test & Revisions 40 Periods.
- 2. For all semesters, the types of End Semester examination for practicum subjects are based on the higher credits towards the theory or practical component of the respective course.
- 3. Some of the audit courses are non-credited but compulsory courses that are a part of the program initiative and the implementation process has to be recorded.
- 4. 1 Credit for Project is equivalent to 45 periods for projects / internships / fellowship.
- 5. Electives 3 & 4 are considered as open Elective provisioning the option for students to take courses from other departments also if suitable with approval from the Head of the Institution

Elective 1

#	Course Category	Course Type	Course Code	Course Title	L-T-P	Period	Credit	End Exam
1	Program Elective	Theory	1076235311	Industrial safety and Pollution control	3-0-0	45	3	Theory
2	Program Elective	Theory	1076235312	Plant Utilities	3-0-0	45	3	Theory
3	Program Elective	Theory	1075235313	Drilling Engineering	3-0-0	45	3	Theory

Elective 2

#	Course Category	Course Type	Course Code	Course Title	L-T-P	Period	Credit	End Exam
1	Program Elective	Practical	1076235521	Chemical Process Simulation Lab	0-0-4	60	2	Practical
2	Program Elective	Practical	1075235522	Analytical Lab	0-0-4	60	2	Practical
3	Program Elective	Practical	1076235523	Environmental Engineering Lab	0-0-4	60	2	Practical

Elective 3 (Pathway)

#	Course Category	Course Type	Course Code	Course Title	L-T-P	Period	Credit	End Exam
	Program Elective Higher Education	Theory	1076236111	Chemical Engineering Thermodynamics and Reaction Engineering	3-0-0	45	3	Theory
	Program Elective Higher Education	Theory	1076236112	Fertilizer Technology	3-0-0	45	3	Theory
3	Program Elective Technocrats	Theory	1075236113	Energy Resources Management	3-0-0	45	3	Theory

Elective4(Specialization)

#	Course Category	Course Type	Course Code	Course Title	L-T-P	Period	Credit	End Exam
1	Program Elective	Theory	1075236211	Processing of Chemicals	3-1-0	60	4	Theory
2	Program Elective	Theory	1076236212	Natural Gas Engineering	3-1-0	60	4	Theory
3	Program Elective	Theory	1076236213	Electrochemical Engineering	3-1-0	60	4	Theory

Theory

L	Т	Р	С
4	0	0	4

Introduction:

Petroleum refining stands as a cornerstone technology within petrochemical engineering, embodying a synergy of physical and chemical processes. Its significance extends far beyond industrial realms, profoundly impacting everyday life. The diverse chapters of petroleum refining, which encompass production, evaluation, purification, and various finishing processes like cracking, reforming, and sweetening, serve as the scaffolding for understanding the intricate operations conducted within a petroleum refinery.

Course Objectives:

On completion of the units of the course, students must be able to understand the following:

- Understanding the elemental composition and physical properties of crude oil.
- Familiarity with exploration techniques, drilling methods, and production processes.
- Knowledge of refining processes and operations within refinery industries, including the optimization of refinery processes.
- Ability to assess the quality of petroleum products using standardized methods.
- Understanding the necessity of desalting, various types of crude oil distillation, and the importance of blending in refineries.
- Insight into cracking, reforming, and Visbreaking processes through both thermal and catalytic conversion methods.
- Understanding of alkylation and isomerization processes.
- Proficiency in finishing processes, such as sulphur conversion through hydrogen, various types of sweetening processes, and Dewaxing methods.

L	Т	Р	С
4	0	0	4

Course Outcomes:

After successful completion of this course, the students should be able to

- **CO1:** Gain introductory knowledge about the exploration and production of petroleum crude, comprehend their properties, and grasp refining processes and operations.
- **CO2:** Understand and assess the quality of petroleum products using standard tests.
- **CO3:** Recognize various primary crude processing techniques such as distillation, desalting, and blending, understanding their importance in supporting processes.
- **CO4:** Identify secondary processes: thermal cracking, catalytic cracking, reforming, and coking, with their supporting processes. Understand technologies for reforming, isomerization, alkylation, and polymerization.
- **CO5:** Apply finishing processes to petroleum products to meet market specifications concerning fuel quality and environmental regulations.

Pre-requisites:

Basics of petrochemicals.

CO/PO Mapping:

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	2	3	3	2	3
CO2	3	2	3	2	3	2	3
CO3	3	3	3	3	3	2	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	2	3

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- It is advised that teachers take steps to pique pupils' attention and boost their learning confidence.
- To help students learn and appreciate numerous concepts and principles in each area, teachers should provide examples from daily life, realistic situations and real- world engineering and technological applications.
- The demonstration can make the subject exciting and foster in the students a scientific mindset. Student activities should be planned on all the topics.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome-based and employability-based.

1075233110	1	L	Т	Р	С
Theory	PETROLEUM REFINING	4	0	0	4

• All demonstrations/Hand-on practices are under a simulated environment (may be followed by a real environment as far as possible).

Assessment Methodology:

		End Semester Examination			
	CA1	CA2	CA3	CA4	(60 marks)
Mode	Written Test (Unit I & II)	Written Test (Unit III & IV)	Quiz MCQ (Online / Offline)	Model Examination	Written Examination
Duration	2 Periods	2 Periods	1 Hour	3 Hours	3 Hours
Exam Marks	50	50	60	100	100
Convertedto	15	15	5	20	60
Marks	15		5	20	60
Tentative Schedule	6 th Week	12 th Week	13-14 th Week	16 th Week	

Note:

CA1 and CA2: Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

Answer five questions (5 X 10 Marks = 50 Marks).

Eight questions will be asked; students should write five questions. Each unit four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

CA3: 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every students (Online/Offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment.

CA4: Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

Question Pattern:

Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

L	Т	T P	
4	0	0	4

Theory

SYLLABUS CONTENTS

Unit - I	Fundamentals of Exploration, Drilling and Refining in Petroleu	m			
Petroleum - Defir	nition - Element composition in Crude oil - Physical properties of crude oil -				
Exploration techn	iques - Methods of exploration - Gravimetric method - Magneto metric method				
- Seismic survey	- Drilling of crude oil (construction and working). Petroleum refining -				
Introduction - Ref	ining process and operation with neat flow diagram - Selection of process for	12			
optimization - Fac	ctors influence the optimization in refinery - Refinery capacity in India.				
Unit - II	Evaluation of Petroleum & its products				
Introduction - TB	P apparatus - Vapor pressure - Flash point and Fire point – Octane number				
- Aniline Point - Cetane number - Diesel index - Calorific value - Smoke point - Viscosity					
and Viscosity ind	lex - Penetration Tests - Cloud point and Pour point - Drop point - Melting				
point - Softening	point - Copper Corrosion Test - Carbone residue - Conradson and Rams	12			
bottom Method -	Refractive index and its applications.				
Unit - III Crude Oil Distillation					
Introduction - Impurities in Crude Oils and its effects - Need for Desalting of Crude Oil -					
Electrical Desalti	ing of Crude Oil - Crude Oil Distillation types - Atmospheric Distillation				
and Vacuum Dis	tillation - Two stage Distillation with stabilizer. Blending – Types and its				
Importance – Prop	perties of Petroleum products and their uses.	10			
Unit -IV	Thermal and Catalytic Conversion Processes				
Introduction - Th	ermal Cracking and catalytic cracking - fluid catalytic cracking Thermal and				
catalytic Reformin	ng - Visbreaking, coking & Delayed Coking – Gasification - Introduction -				
Alkylation - Su	lphuric Acid Alkylation and HF Alkylation. Isomerization - Butane	14			
isomerization Pro	ocess.				
Unit -V	Finishing Processes				
Introduction - S	Sulphur Conversion Processes - Hydro desulphurization Processes -				
Sweetening Processes - Doctor Treating Processes - Merox Processes - Phenol and Furfural					
Extraction process and Amine Treatment for LPG - Dewaxing - solvent Dewaxing and De-					
asphalting process		12			
	TOTAL HOURS	60			

L	T P		С
4	0	0	4

Theory

Text and Reference Books:

- Modern Petroleum Refining Process B.K. Bhaskara Rao 6thEdition OXFORD & IBH Publishing Co. Pvt. Limited - 2018.
- 2. A Text on Petro Chemicals Dr.B.K.Bhaskara Rao 5th Edition Khanna Publishers 2004.
- 3. Petroleum Refining Technology Dr.Ram Prasad 1stEdition Khanna Publishers 1998.
- 4. Petroleum Exploration and Exploitation Practices Bhagan Sahay Allied Publishers Limited 2001.
- 5. Petroleum Refinery Engineering W.L Nelson 4thEdition Tata McGraw Hill 1985.
- 6. Modern Petroleum Technology G.D.Hobson and W.Roh Applied Science 1973.
- 7. Petroleum Engineering Handbook Howard B.Bradley Society of Petroleum Engineers 1987.
- 8. Wellsite Geological Techniques for Petroleum Exploration Shay B Allied Publishers Limited 1988.

Web-based/Online Resources:

- 1. <u>http://www.sciencedirect.ru</u>
- 2. <u>https://archive.nptel.ac.in/content/syllabus_pdf/103102022.pdf</u>

Video: 1. Popular Petroleum Videos:

1. <u>http://www.youtube.com/watch?v=8W8SW98-</u> <u>sXQ&list=PL4MMogccZFXBbHdxy_xCtkP3m4yZ7f4kD</u>

END SEMESTER QUESTION PATTERN - THEORY EXAM

Duration : 3 Hrs

Max. Marks : 100

Note: Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Instruction to the Question Setters:

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Theory

L	Т	Р	С
3	1	0	4

Introduction:

The knowledge of fluid flow is very essential because all chemical plants involved fluid flow. The examples are flow of stream and gases in pipes, flow of liquid in pipes and open Channels etc. This subject aims at the basic concepts of fluid flow, measurement Techniques involved for the same and equipment used for the transportation of fluids. With this background, students will be able to quantitatively find out material and power Requirement for a process.

Course Objectives:

The primary objective of this course is to provide a foundational understanding of fluid flow phenomena. This includes:

- Deriving mass and momentum balance equations from fundamental principles.
- Exploring the transportation of fluids and various flow measuring devices.

Course Outcomes:

After successful completion of this course, the students should be able to

- **CO1:** To understand the basic properties, classification of fluid and pressure measurement under the conditions of fluid statics, which will empower them to tackle real-world challenges in engineering and science.
- CO2: To grasp the concept of fluid flow and their various types, analyze fluid flow through Reynolds' experiment, interpret fluid energies using Bernoulli's equation and apply the continuity equation for fluid flow calculations
- **CO3:** To understand the concept of flow of incompressible fluid through pipes and conduit, Fluid Friction, Energy losses in pipes due to sudden expansion and contraction, and also basic principles of fluidization engineering.
- **CO4:** To gained comprehensive knowledge and practical insights into pipes, tubes, gaskets, valves, and water hammer prevention in industrial settings, enabling them to apply this knowledge effectively in their respective roles within the chemical industry.
- **CO5:** To acquire a comprehensive understanding of various types of pumps, including centrifugal pumps and reciprocating pumps, as well as the working principles of gear pumps and steam jet ejectors.

Theory

L	Т	Р	С
3	1	0	4

CO/PO Mapping:

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	1	3	2	1	3
CO2	3	3	1	3	2	1	3
CO3	3	3	1	3	2	1	3
CO4	3	3	1	3	2	1	3
CO5	3	3	2	3	2	1	3

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Pre-requisites

Knowledge of basic Mathematics and basic Physics.

Instructional Strategy:

- It is advised that teachers take steps to pique pupils' attention and boost their learning confidence.
- To help students learn and appreciate numerous concepts and principles in each area, teachers should provide examples from daily life, realistic situations and real- world engineering and technological applications.
- The demonstration can make the subject exciting and foster in the students a scientific mindset. Student activities should be planned on all the topics.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome-based and employability-based.
- All demonstrations/Hand-on practices are under a simulated environment (may be followed by a real environment as far as possible).

L	Т	Р	С
3	1	0	4

Theory

Assessment Methodology:

		End Semester Examination			
	CA1	CA2	CA3	CA4	(60 marks)
Mode	Written Test (Unit I & II)	Written Test (Unit III & IV)	Quiz MCQ (Online / Offline)	Model Examination	Written Examination
Duration	2 Periods	2 Periods	1 Hour	3 Hours	3 Hours
Exam Marks	50	50	60	100	100
Convertedto	15	15	5	20	60
Marks	15		5	20	60
Tentative Schedule	6 th Week	12 th Week	13-14 th Week	16 th Week	

Note:

CA1 and CA2: Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

Answer five questions (5 X 10 Marks = 50 Marks).

Eight questions will be asked; students should write five questions. Each unit four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

CA3: 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every students (Online/Offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment.

CA4: Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

Question Pattern:

Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Theory

L	Т	Р	С
3	1	0	4

Syllabus Contents

Unit I	FLUID STATICS					
Fluids – c	lefinition- Properties of Fluids – Density, Specific Gravity, Viscosity - Dynamic					
Viscosity	& Kinematic Viscosity, Specific weight - simple problems in properties of fluids -					
variation of Viscosity of Gases and Liquids with temperature.						
Classification of Fluids - Compressible and Incompressible Fluids - Newton's Law of Viscosity						
- Newtoni	an Fluids and Non-Newtonian Fluids with examples.	12				
Pressure -	Types of Pressure - Atmospheric, Gauge & Absolute Pressure - List of Pressure					
measuring	devices - U-Tube Manometer - computation of Pressure difference using U-Tube					
manomete	r - Inclined Manometer – Simple Problems in U-Tube manometer.					
Unit II	FLUID FLOW PHENOMENA					
Types of F	Flow – Laminar & Turbulent Flow, Potential Flow. Reynolds's Experiment – Critical					
	Reynolds's Number and Its Significance, Velocity Profile for Laminar Flow &					
-	Flow, Simple problems using Reynolds's Number.					
Energies of fluids - Potential energy, pressure energy and kinetic energy (Statement only) -						
C	of Bernoulli's Equation (derivation excluded) - Significance of Bernoulli's	10				
Equation.		12				
^	rate & Volumetric flow rate, Average velocity, Mass Velocity, Relation between					
	velocity & Average velocity (derivation excluded). Continuity equation & its					
Significan	ce, Simple problems in Continuity equation.					
-						
Unit III	FLOW OF INCOMPRESSIBLE FLUIDS					
Pressure d	rop – Skin Friction & Form Friction – Fanning Friction factor – Relation between					
Skin friction & Friction Factor (derivation excluded) -Friction factor Chart & its use-						
Application of Hagen Poiseuille's equation & Fanning Equation in calculating energy loss-						
Simple problems.						
Energy Loss due to sudden expansion and sudden contraction (derivation excluded) –						
Equivalen	Equivalent length concept – Hydraulics radius & Equivalent diameter.					
Drag – I	Drag Co-efficient - Stokes' Law - Fluidization -Mechanism of Fluidization-					
Advantage	es & disadvantages of Fluidization- Applications of Fluidization.					

107	6233210	

Theory

MOMENTUM TRANSFER

L	Т	Р	С
3	1	0	4

Unit IV	PIPES, FITTINGS AND VALVES		
Difference	between Pipes & Tubes- Schedule Number- BWG Number - International standards		
of pipes an	d fittings API and ASME – Color coding in industry.		
Gaskets – I	List of commonly used Gasket materials in Chemical Industry & its applications.		
Valves – 1	Functions of Valves, Types of Valves - Gate Valve, Globe Valve, Ball Valve,	12	
Diaphragm	Nalve, Butterfly Valve & Check valve (Lift check valve) - Brief description of the		
above valv	es with line diagram - Water Hammer & its Prevention.		
Unit V	TRANSPORTATION OF FLUIDS		
Pumps – 0	Classification of Pumps - Centrifugal Pump -Principle of operation and Working -		
Types of I	mpellers and its uses - Priming - Negative suction and positive suction- Priming		
procedure	- Cavitation - Symptoms and Causes of Cavitation & It's $\mbox{ prevention - NPSH}_R$ &		
NPSH _A - C	concept of multistage centrifugal pump.		
Working p	rinciple of Reciprocating pump (single acting) and Gear pump (External gear pump	12	
only) – working principle of steam jet ejector.			
Difference between Fans, Blowers & Compressors - Principle of Operation and Working of			
Centrifuga	l Compressor- Surge & its prevention.		
	TOTAL HOURS	60	

Text and Reference Books:

- Unit Operations of Chemical Engineering W.L. McCabe and J.C. Smith 6th Edition McGraw Hill Book Co. Singapore - 2001.
- 2. Introduction to chemical Engineering W.L. Badger and J.T. Banchero Tata McGraw Hill Publishing Co. Ltd. New Delhi 1997.
- 3. Unit Operations –I K A Gavhane Nirali Publications 2011.
- Ghoshal, Sanyal and Dutta Introduction to chemical Engineering 1st Edition Tata McGraw Hill Publishing Co.Ltd. New Delhi - 2004.
- 5. Fluid mechanics Frank M. White 7th Edition McGraw Hill 2010.
- 6. Fluid Mechanics & Fluid power engineering Kumar D. S S. K. Kataria & Sons 2004.
- 7. Engineering Mechanics Timoshenko S. P. and Young D. H McGraw Hill 1937.
- 8. Perry's, Handbook of Chemical Engineering, 7th Edition, McGraw Hill, 1997.
- 9. Fluid Mechanics and Hydraulic Machines R.K. Bansal 7th Edition Laxmi Publication 2017.

L	Т	Р	С
3	1	0	4

Web-based/Online Resources:

- <u>https://www.youtube.com/watch?v=clD2eSV0DGo</u>
- https://archive.nptel.ac.in/courses/103/104/103104044/

END SEMESTER QUESTION PATTERN - THEORY EXAM

Duration: 3 Hrs

Max. Marks: 100

Note: Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Instruction to the Question Setters:

•

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

L	Т	Р	С
0	0	4	2

Introduction:

Momentum transfer is a fundamental concept in physics that deals with the transfer of momentum from one object to another. In practical terms, momentum transfer finds numerous applications across various fields, from engineering to fluid mechanics to astrophysics. One common practical application of momentum transfer is in fluid dynamics, where it plays a crucial role in understanding the behavior of fluids such as liquids and gases. For instance, in the design of aircraft wings or propellers, engineers must consider how momentum is transferred from the air to the wing or propeller blades to generate lift or thrust.

Course Objective:

• To provide hands-on experience in the working of fluid handling equipment and measuring devices.

Course Outcomes (CO):

On successful completion of this course, the student will be able to:

- **CO1:** Measurement of flow rate through flow meter by using flow measuring device such as Orifice meter, Venturi meter, Rota meter and weir.
- **CO2:** Computation of the velocity profile and frictional losses in Straight and helical pipes.
- **CO3:** Evaluation the characteristics of a centrifugal pump and reciprocating pump.
- CO4: Evaluation of Minimum fluidization velocity of fluid by using fluidized bed column.
- **CO5:** Evaluation the pressure drop through a packed column.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	2	3	3	2	3
CO2	3	2	3	2	3	2	3
CO3	3	3	3	3	3	2	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	2	3

CO/PO Mapping:

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation.

L	Т	Р	С
0	0	4	2

Practical

Instructional Strategy:

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.
- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies.

		End Semester Examination			
	CA1	CA2	CA3	CA4	(60 marks)
Mode	Practical Test	Practical Test	Practical Document	Practical Test	Practical Examination
Portion	First Cycle	Second Cycle	All Exercises	All Exercises	All Exercises
Duration	2 Periods	2 Periods	Regularly	3 Hours	3 Hours
Exam Marks	50	50	Each Practical 10 Marks	100	100
Converted to	10	10	10	20	60
Marks	1	0	10	20	60
Tentative Schedule	7 th Week	14 th Week	15 th Week	16 th Week	

Assessment Methodology:

L	Т	Р	С
0	0	4	2

Note:

• CA1 and CA2: All the exercises/experiments as per the portions mentioned above should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded will be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

First Cycle : 1,2,3,4 & 5.

Second Cycle : 6,7,8,9 & 10.

SCHEME OF EVALUATION

Part	Description	Marks
А	Aim, Apparatus Required, Formulas	10
В	Tabular Column & Observations	20
C	C Calculations & Result	
	TOTAL MARKS	

• CA 3: Practical document should be maintained for every exercise / experiment immediately after completion of the practice. The same should be evaluated for 10 Marks. The total marks awarded should be converted to 10 Marks for the internal assessment. The practical document should be submitted for the Practical Test and End Semester Examination with a bonafide certificate

The details of the documents to be prepared as per the instruction below.

Each exercise observation and calculations should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

This documentation can be carried out in a separate notebook or printed manual or file. The reading and calculations and graph should be written by the student manually.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

• CA 4: All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded should be converted to 20 Marks for the internal assessment.

MOMENTUM TRANSFER PRACTICAL

L	Т	Р	С
0	0	4	2

Practical

SCHEME OF EVALUATION

Part	Description	Marks	
А	Aim & Apparatus Required	10	
В	Formulas, Explanations, Tabular Column	20	
С	Observations & Reading Taken	20	
D	Calculations	20	
Е	Result	20	
F	Viva voce	10	
	TOTAL MARKS		

Syllabus Contents

Unit I	MEASUREMENT OF FLOW RATE THROUGH FLOW METER BY USING FLOW METERS	
Measuremen	nt of fluid flow – Types of flow meters – Principle, Construction and working	
of Orifice m	eter- Venturi meter – Rota meter – Pipe fittings – Application, Advantages	
and Disadva	ntages of flow meters.	20
Ex. 1	Determination of flow rate using Orifice meter.	
Ex. 2	Determination of flow rate using Venturi meter.	
Ex. 3	Determination of flow rate using Rota Meter.	
Ex. 4	Flow through pipe fittings.	
Unit II	COMPUTATION OF THE VELOCITY PROFILE AND FRICTIONAL	
	LOSSES IN PIPES	
Velocity pro	ofile – Introduction - Friction factor – Definition – Reason for friction losses	
– computati	onal of friction losses in straight and helical pipes.	10
Ex. 5	Computing pressure drop of a fluid flowing through a straight pipe by using conventional method or Virtual method.	10
Ex. 6	Computing pressure drop of a fluid flowing through a helical coil.	

Practical

MOMENTUM TRANSFER PRACTICAL

L	Т	Р	С
0	0	4	2

Unit III EVALUATION THE CHARACTERISTICS OF PUMPS.		
Transportation of fluids – Pump – Introduction – Types of pumps – Construction,		
Working, Application, Advantages and Disadvantages of Centrifugal pump and		
Reciprocating pump – Charactertics of centrifugal and Reciprocating pump.	15	
Ex. 7 Centrifugal pump characteristics.		
Ex. 8 Reciprocating pump characteristics.		
Unit IV EVALUATION OF MINIMUM FLUIDIZATION VELOCITY		
Fluidization bed column – Introduction – Construction and Working - Minimum		
Fluidization velocity – Definition – calculation of minimum fluidization velocity –	7	
Application, Advantages and Disadvantages.	7	
Ex. 9 Flow through fluidization column by using conventional method or Virtual method.		
Unit V EVALUATION THE PRESSURE DROP THROUGH A PACKED COLUMN.		
Packed bed column – Introduction – Construction and Working – Pressure drop –		
Definition – calculation of pressure drop – Ergun Equation - Application, Advantages	8	
and Disadvantages.		
Flow through packed column by using conventional method or Virtual		
Ex. 10 method.		
Total Hours	60	

Note : Out of 10 experiments, the above mentioned three experiments (Ex. 5, 9 &10) may be done by conventional method or by using virtual lab simulator developed by Initiative of Ministry of Education under the National Mission on Education using the below link.

http://www.vlab.co.in/ba-nptel-labs-chemical-engineering.

END SEMESTER EXAMINATION – PRACTICAL EXAM.

Note:

- The Practical document prepared by the student should be submitted with a Bonafide Certificate.
- All the exercises have to completed, any one exercise will be given for examination.
- Practical observation note book is sufficient and no need of separate practical record note book. Submission of Practical observation note book to model practical exam and end semester practical exam is mandatory.
- All the exercises should be given in the question paper. The student is allowed to select by lot or question paper issued by the DOTE Exam section shall be used.

Part	Description	Marks	
А	Aim & Apparatus Required	10	
В	Formulas, Explanations, Tabular Column	20	
C	Observations & Reading Taken	20	
D	Calculations	20	
E	Result	20	
F	Viva voce	10	
	TOTAL MARKS		

DETAILED ALLOCATION OF MARKS

Practical

L	Т	Р	С
0	0	4	2

Equipment / Facilities required to conduct the Practical Portions:

S.No.	Name of the Equipment	Quantity Required
1	Orifice meter.	1 No.
2	Venturi meter.	1 No.
3	Rota Meter.	1 No.
4	Pipe fittings.	1 No.
5	Flow through straight pipe	1 No.
6	Flow through a helical coil.	1 No.
7	Centrifugal pump.	1 No.
8	Reciprocating pump.	1 No.
9	Fluidization column.	1 No.
10	Packed column.	1 No.

L	Т	Р	С
0	0	4	2

Introduction:

This subject allows the students to interpret the chemical engineering drawings commonly used in Industries and gain Practice to draw Chemical Engineering Equipment with 2D & 3D using AutoCAD commends.

Course Objectives:

The objective of this course is to enable the student to

- In this practical subject, the students are required to learn the basic Concepts of AutoCAD like screen inter face, various commands and co- Ordinate system used.
- This practical subject will also impart them requisite knowledge of creating 2D objects using various draw commands.
- The students will also learn to draw the isometric drawings and isometric Projections.
- The students will also learn the 3D fundamentals and 2D to 3D conversions.

Course Outcomes (CO):

After successful completion of this course, the students should be able to

CO1:	Summarize Computer Aided Design.
CO2:	Illustrate the basic commands in AutoCAD.
CO3:	Sketch block and Isometric 2D drawing in AutoCAD.
CO4:	Illustrate 3D modelling in AutoCAD.
CO5:	Sketch various chemical engineering equipment using AutoCAD.

Pre-requisites:

Engineering Graphics Computing Fundamentals

1076233420	CHEMICAL CAD PRACTICAL	L	Т	Р	С
Practical	CHEMICAL CAD FRACTICAL	0	0	4	2

CO/PO Mapping:

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	2	3	-	-	-	2
CO2	3	2	3	-	-	-	2
CO3	3	2	3	-	-	-	2
CO4	3	2	3	-	-	-	2
CO5	3	2	3	-	-	-	2

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.
- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies.

Practical

L	Т	Р	С
0	0	4	2

Assessment Methodology:

		End Semester Examination			
	CA1	CA2	CA3	CA4	(60 marks)
Mode	First Cycle / 50 % Exercises	Second Cycle / 50 % Exercises	All Exercises	All Exercises	All Exercises
Duration	2 Periods	2 Periods	Regularly	3 Hours	3 Hours
Exam Marks	50	50	Each Practical 10 Marks	100	100
Converted to	10	10	10	20	60
Marks	1	0	10	20	60
InternalMarks	4		0		60
Tentative Schedule	7 th Week	14 th Week	15 th Week	16 th Week	

Note:

• CA1 and CA2: All the exercises/experiments as per the portions mentioned above should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded will be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

First Cycle : 1,2,3,4 & 5.

Second Cycle : 6,7,8,9 & 10.

SCHEME OF EVALUATION

Part	Description	Marks		
А	Aim, Basic Command	5		
В	Schematic Diagram, Schematic Diagram & Procedure	20		
С	Printout & Result	25		
	TOTAL MARKS			

• CA 3: Practical document should be maintained for every exercise / experiment immediately after completion of the practice. The same should be evaluated for 10 Marks. The total marks awarded should be converted to 10 Marks for the internal assessment. The practical document should be submitted for the Practical Test and End Semester Examination with a bonafide certificate

1076233420	CHEMICAL CAD PRACTICAL	L	Т	Р	С
Practical	CHEMICAL CAD FRACTICAL	0	0	4	2

The details of the documents to be prepared as per the instruction below.

Each exercise observation and calculations should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise. This documentation can be carried out in a separate notebook or printed manual or file. The reading and calculations and graph should be written by the student manually.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

• CA 4: All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded should be converted to 20 Marks for the internal assessment.

Part	Description	Marks			
А	Aim & Basic Command	10			
В	Schematic Diagram	20			
С	Procedure	20			
D	Printout	20			
Е	Result	20			
F	Viva voce	10			
	TOTAL MARKS				

SCHEME OF EVALUATION

Syllabus contents

Part - I 2D DRAWING					
	tion – Definition – Importance of CAD - Basic command - Practice to draw the				
Chemica	Chemical Engineering Equipment with 2D using AutoCAD commends.				
Ex.No	Name of the Experiment				
1	Batch Reactor.				
2	Shell and tube Heat exchanger.	30			
3	Long tube Evaporator.				
4	Ball mill.				
5	Simple piping layout with 2D.				
Part - II 3D DRAWING					
Introduc	tion – Definition – Importance of 3D Drawing - Basic command - Practice to draw				
the Chemical Engineering Equipment with 3D using AutoCAD commends.					
Ex.No	Name of the Experiment				
6	Spray Drier.				
7	Absorption column.	30			
8	Agitated batch crystallizer.				
9	Simple piping layout in isometric view.				
10	Set up Process Instrumentation Diagram (P & ID) of Distillation column.				
	TOTAL HOURS	60			

END SEMESTER EXAMINATION – PRACTICAL EXAM.

Note:

- The Practical document prepared by the student should be submitted with a Bonafide Certificate.
- All the exercises have to completed, any one exercise will be given for examination.
- Practical observation note book is sufficient and no need of separate practical record note book. Submission of Practical observation note book to model practical exam and end semester practical exam is mandatory.
- All the exercises should be given in the question paper. The student is allowed to select by lot or question paper issued by the DOTE Exam section shall be used.

DETAILED ALLOCATION OF MARKS

Part	Description	Marks			
А	Aim & Basic Command	10			
В	Schematic Diagram	20			
С	Procedure	20			
D	Printout	20			
Е	Result	20			
F	Viva voce	10			
	TOTAL MARKS 100				

Equipment / Facilities required to conduct the Practical Portions:

S.No.	Name of the Equipment / Facilities required	Quantity Required
1	Computer	Required Quantities
2	Printer	1 No.
3	CAD software (Open Source)	

L	Т	Р	С
0	0	4	2

Introduction:

The distillate testing lab is a key part of the oil and gas Industry. It is used to determine a petroleum product's physical and chemical properties as well as its purity. It can be achieved by using various equipment focused on petroleum refinery. The lab is vital for quality control, research, and overall excellence in producing and distributing petroleum products, ultimately supporting the industry's sustainability and advancement.

Course Objectives:

- To aware of various petroleum products.
- To know characteristics or properties of petroleum products.
- To get acquainted with basic separation and conversion processes used in refining of crude oil.

Course Outcomes (CO):

On successful completion of this course, the student will be able to:

CO1:	Analyze the volatility of the hydrocarbon of the given petroleum sample by Distillation,
	Reid vapor pressure.
CO2:	Evaluation of combustion properties of petroleum products by aniline point and smoke
02:	point.
CO3:	Determination of viscosity and consistency of petroleum products by kinematic viscosity
005:	and penetration test.
CO4:	Evaluation corrosiveness potentiality and tendency of petroleum products by copper
	corrosion test and softening point.
CO5:	Estimate the miscellaneous properties of petroleum properties such as carbon residue,
	refractive index and sedimentation by centrifuge.

Pre-requisites:

Petroleum Refining.

Practical

DISTILLATE TESTING PRACTICAL

L	Т	Р	С
0	0	4	2

CO/PO Mapping:

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	2	3	3	1	2
CO2	2	3	2	3	3	1	2
CO3	3	3	2	3	3	1	2
CO4	3	3	2	3	3	1	2
CO5	3	3	2	3	3	1	2

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.
- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies.

Practical

DISTILLATE TESTING PRACTICAL

L	Т	Р	С
0	0	4	2

Assessment Methodology:

	Continuous Assessment (40 marks)			End Semester Examination	
	CA1	CA2	CA3	CA4	(60 marks)
Mode	Practical Test	Practical Test	Practical Document	Practical Test	Practical Examination
Portion	First Cycle	Second Cycle	All Exercises	All Exercises	All Exercises
Duration	2 Periods	2 Periods	Regularly	3 Hours	3 Hours
Exam Marks	50	50	Each Practical 10 Marks	100	100
Converted to	10	10	10	20	60
Marks	1	0	10	20	60
Tentative Schedule	7 th Week	14 th Week	15 th Week	16 th Week	

Note:

• CA1 and CA2: All the exercises/experiments as per the portions mentioned above should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded will be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

First Cycle : 1,2,3,4,5 & 6.

Second Cycle : 7,8,9,10,11 & 12.

SCHEME OF EVALUATION

Part	Description	Marks
А	Aim, Apparatus Required, Formulas	10
В	Tabular Column & Observations	20
С	Calculations & Result	20
	50	

Practical

L	Т	Р	С
0	0	4	2

• CA 3: Practical document should be maintained for every exercise / experiment immediately after completion of the practice. The same should be evaluated for 10 Marks. The total marks awarded should be converted to 10 Marks for the internal assessment. The practical document should be submitted for the Practical Test and End Semester Examination with a bonafide certificate

The details of the documents to be prepared as per the instruction below.

Each exercise observation and calculations should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

This documentation can be carried out in a separate notebook or printed manual or file. The reading and calculations and graph should be written by the student manually.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

• CA 4: All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded should be converted to 20 Marks for the internal assessment.

Part	Description	Marks	
А	Aim & Apparatus Required	10	
В	Formulas, Explanations, Tabular Column	20	
C	Observations & Reading Taken	20	
D	Calculations	20	
Е	Result	20	
F	Viva voce	10	
	TOTAL MARKS 100		

SCHEME OF EVALUATION

DISTILLATE TESTING PRACTICAL

L	Т	Р	С
0	0	4	2

Practical

Syllabus contents

	ANALYSIS OF THE VOLATILITY OF THE HYDROCARBON IN	THE		
Unit I	PETROLEUM SAMPLE			
Volatility of	f petroleum products - methods of assessment of volatility of petroleum			
products - d	istillation by ASTM – Reid vapor pressure.	10		
Ex. 1	ASTM Distillation of Petroleum Products.	10		
Ex. 2	Determination of Reid vapor Pressure.			
T T •4 TT	EVALUATION OF COMBUSTION PROPERTIES OF PETROLE	CUM		
Unit II	PRODUCTS			
Combustion	n - introduction - methods of assessment of combustion properties in			
petroleum p	products -ignition quality of petroleum product by aniline point - burning			
quality by s	moke point.	10		
Ex. 3	Determination of aromatics using aniline point.			
Ex. 4	Smoke point of Petroleum Products.			
DETERMINATION OF VISCOSITY AND CONSISTENCY OF PETROLEUR				
Unit III	PRODUCTS			
Viscosity –	introduction- absolute viscosity - kinematic viscosity - viscosity index -			
consistency	of penetration methods.	10		
Ex. 5	Determination of Kinematic Viscosity.	10		
Ex. 6	Determination of Penetration number of Bitumen.			
T T •4 T T7	EVALUATION CORROSIVENESS POTENTIALITY AND TENDEN	CY OF		
Unit IV	PETROLEUM PRODUCTS			
Softening p	point – definition –purpose for calculating the softening point – corrosion –			
Reasons for	Reasons for corrosion of petroleum products - methods of measurements of corrosion			
potentiality	potentiality – Experiment for measurement of corrosion in petroleum products by			
Copper corr	Copper corrosion test.			
Ex. 7	Softening point.			
Ex. 8	Copper Corrosion test.			

DISTILLATE TESTING PRACTICAL

L	Т	Р	С
0	0	4	2

Practical

Unit V	ESTIMATE THE MISCELLANEOUS PROPERTIES OF PETROLEUM PROPERTIES	
Miscellaneo	ous properties of Petroleum products - Refractive index - Introduction -	
Measureme	nt of Refractive index by refract meter – Carbon residue in crude – methods	
of measure	ment of carbon residue – Carbon residue by Conradson method and Rams	
bottom method.		20
Ex. 9	Determination of Refractive Index.	20
Ex. 10	Carbon residue by Conradson method.	
Ex. 11	Carbon residue by Rams bottom method.	
Ex. 12	Determination of Sediments and water in crude by centrifuging.	
Total Hours		60

END SEMESTER EXAMINATION – PRACTICAL EXAM.

Note:

- The Practical document prepared by the student should be submitted with a Bonafide Certificate.
- All the exercises have to completed, any one exercise will be given for examination.
- Practical observation note book is sufficient and no need of separate practical record note book. Submission of Practical observation note book to model practical exam and end semester practical exam is mandatory.
- All the exercises should be given in the question paper. The student is allowed to select by lot or question paper issued by the DOTE Exam section shall be used.

DISTILLATE TESTING PRACTICAL

L	Т	Р	С
0	0	4	2

Practical

DETAILED ALLOCATION OF MARK

Part	Description	Marks	
А	Aim & Apparatus Required	10	
В	Formulas, Explanations, Tabular Column	20	
С	Observations & Reading Taken	20	
D	Calculations	20	
Е	Result	20	
F	Viva voce	10	
	TOTAL MARKS 100		

Equipment / Facilities required to conduct the Practical Portions:

S.No.	Name of the Equipment	Quantity Required
1	ASTM Distillation Apparatus.	1 No.
2	Reid vapor Pressure Apparatus.	1 No.
3	Aniline point Apparatus.	1 No.
4	Smoke point Apparatus.	1 No.
5	Kinematic Viscosity Apparatus.	1 No.
6	Penetration test Apparatus.	1 No.
7	Softening point Apparatus.	1 No.
8	Copper Corrosion test Apparatus.	1 No.
9	Refractive Index Apparatus.	1 No.
10	Conradson method Apparatus.	1 No.
11	Rams bottom method Apparatus.	1 No.
12	Centrifuging Apparatus.	1 No.

L	Т	Р	С
1	0	4	3

Practicum

Introduction:

The subject allows the students to gain knowledge in understanding the various mechanical properties of materials, steam generation systems, Boiler function and the important components of a boiler, steam turbines, refrigeration systems, Electrical Distribution systems and Electrical Transmissions.

Course Objectives:

- To develop an understanding about the various properties of materials and its strength
- To develop an understanding of boiler, turbine and electrical distribution systems.

Course Outcomes:

After successful completion of this course, the students should be able to:

- **CO1:** Various Mechanical properties of the materials and types of stresses.
- **CO2:** Understand the properties of steam and the function of Boiler.
- **CO3:** Explain the basic principle of working of boiler and turbine.
- **CO4:** Understand the various electrical distributions systems in chemical process industries.
- **CO5:** Identifying the various parts of valves and centrifugal pump and understand how to dismantle and assemble the valves and centrifugal pump.

Pre-requisites:

None.

GENERAL ENGINEERING

L T P C 1 0 4 3

CO/PO Mapping:

Practicum

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	2	1	1	1	3
CO2	3	3	2	1	1	1	3
CO3	3	3	2	1	1	1	3
CO4	3	3	2	1	1	1	3
CO5	3	3	2	1	1	1	3

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- It is advised that teachers take steps to pique pupils' attention and boost their learning confidence.
- To help students learn and appreciate numerous concepts and principles in each area, teachers should provide examples from daily life, realistic situations, and real-world engineering and technological applications.
- The demonstration can make the subject exciting and foster in the students a scientific mindset. Student activities should be planned on all the topics.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome and employability-based.
- Do not let students work on an activity or an experiment with the expected outcome, rather allow students to be honest about whatever the results of the experiment are. If the results are different from the expectations, students should do an analysis where they could be the source of error, if any.

GENERAL ENGINEERING

L T P C 1 0 4 3

Practicum

Assessment Methodology:

	(End Semester			
	CA1	CA2	CA3	CA4	Examination (60 marks)
Mode	Practical Test	Practical Test	Written Test Theory	Practical Test	Practical Examination
Portion	Cycle I Exercises 50% Exercises	Cycle II Exercises	All Units	All Exercises	All Exercises
Duration	2 Periods	2 Periods	3 Hours	3 Hours	3 hours
Exam Marks	60	60	100	100	100
Converted to Marks	10	10	15	15	60
Marks	1	10 15 15		60	
Internal Marks					
Tentative Schedule	7 th Week	14 th Week	15 th Week	16 th Week	

Note:

• CA1 and CA2: All the exercises/experiments should be completed as per the portions above and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded shall be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Practical documents should be maintained for every exercise / experiment immediately after completion of the practice. The practical document should be submitted for the practical test. The same should be evaluated for 10 Marks for each exercise/experiment. The total marks awarded should be converted to 10 Marks for the practical test as per the scheme of evaluation as below.

L	Т	Р	С
1	0	4	3

Practicum

The details of the documents to be prepared as per the instruction below.

Each exercise observation and calculations should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

This documentation can be carried out in a separate notebook or printed manual or file. The reading and calculations and graph should be written by the student manually.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

Part	Part Description		
А	Aim & Apparatus Required	5	
В	Formulas, Explanations, Tabular Column and Schematic Diagram	20	
С	Calculations & Result	25	
	TOTAL	50	
D	Practical Documents (As per the portions)	10	
TOTAL MARKS			

SCHEME OF EVALUATION

• CA 3: Written Test for complete theory portions should be conducted for 100 Marks as per the question pattern below. The marks scored will be converted to 15 Marks for internal assessment.

Question pattern – Written Test Theory

Description		Marks		
Part – A	30 MCQ Questions.	30 x 1 Marks	30 Marks	
Part – B	7 Questions to be answered out of 10 Questions.	7 x 10 Marks	70 Marks	
	TOTAL		100 Marks	

1076233640	GENERAL ENGINEERING	L	Т	Р	C
Practicum	GENERAL ENGINEERING	1	0	4	3

• **CA 4:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation below. The marks awarded should be converted to 15 Marks for the internal assessment.

SCHEME OF EVALUATION

Model Practical Examination and End Semester Examination – Practical Exam

Part	Description	Marks
A	Aim & Apparatus Required	5
В	Formulas, Tabular Column and Schematic Diagram	20
С	Observations & Calculations	25
D	Result	10
Е	Written Test (Theory Portions)	30
F	Viva voce	10
	TOTAL MARKS	100

Syllabus Content

Unit I	BOILERS AND TURBINES	
	Steam- Distinguish the wet steam, dry steam, saturated steam and supersaturated	
	steam. Properties of steam- sensible heat, latent heat, total heat of steam, superheat	
	and dryness fraction- Boiler- function of boiler- construction and working of a	
	Simple Vertical Boiler – Fuels used in boiler- LNG and furnace oil - Definition of	8
Ι	low pressure steam, medium pressure steam and high pressure steam.	
	Steam turbine- purpose of steam turbine in process industries - Construction and	
	working principle of steam turbine and gas turbine with simple sketch - Turbine	
	efficiency- waste recovery in turbine.	
Ex.No	Name of the Experiment	
1	Identify the parts of Gate valve, dismantle and assemble the parts of Gate valve.	•
2	Identify the parts of Globe valve, dismantle and assemble the parts of Globe valve.	30

Practicum

GENERAL ENGINEERING

L	Т	Р	С
1	0	4	3

	Identify the parts of centrifugal pump, dismantle and assemble the parts of		
3	Centrifugal pump.		
4	Compressor Test Rig		
Unit II	ELECTRICITY AND ELECTRICAL DISTRIBUTION SYSTEM		
	Definition the following terms: Electricity- Voltage- Voltmeter- Ampere-		
	Ammeter- watts - wattmeter- Statement of Ohm's Law- simple problems in		
	Ohm's Law.		
	Grounding and the purpose of grounding the motors and equipment -		
	Types of current- AC Current & DC current- comparison of AC & DC current.		
II	Electrical Distribution systems: Transformers- Construction and working	7	
	principle of Transformer - Motor Control Centers (MCC) - Fuses- Circuit		
	breakers- Switch. (Functions of the above with brief description).		
	Construction and working principle of D.C motor- Difference between		
	motor and generator.		
Ex.No	Name of the Experiment		
5	Determination of Unknown Resistance by Ohm's law.		
6	Energy measurement in a single phase circuit using Lamp load.	30	
7	Load test on a single phase transformer.	50	
8	Verification of Series and parallel circuit.		
	TOTAL HOURS	75	

Suggested List of Students Activity:

- Presentation/ Seminars by students on any recent technological developments based on the course.
- Periodic class quizzes conducted on a weekly/fortnightly based on the course
- Micro project that shall be an extension of any practical lab exercise to real-world application.

L	Т	Р	С
1	0	4	3

Practicum

Text and Reference Books:

- 1. Theory of Mechanics R.S Khurmi Eurasia Publishing House 2017.
- 2. A text book of power plant engineering R.K. Rajput 5th Edition Laxmi Publishers 2016.
- 3. A text book of refrigeration and air conditioning R.S. Khurmi Chand Publishers 2006.
- 4. Practical boiler operation engineering and power Mallick Ranjan PHI Publishers 2015.
- 5. A text book of Electrical technology Vol.1 and Vol.2 B.L. Theraja S.Chand publishers 2014.

Web-based/Online Resources:

- <u>https://www.essentialchemicalindustry.org</u>
- https://pubs.acs.org/journal/iecred
- https://publica.fraunhofer.de/items/ffb7e060-d220-4e72-81f5-ae5e18224610
- <u>https://www.sciencedirect.com/journal/journal-of-industrial-and-engineering-</u> <u>chemistry</u>

END SEMESTER EXAMINATION – PRACTICAL EXAM.

Note:

- The Practical document prepared by the student should be submitted with a Bonafide Certificate.
- All the exercises have to completed, any one exercise will be given for examination.
- Practical observation note book is sufficient and no need of separate practical record note book. Submission of Practical observation note book to model practical exam and end semester practical exam is mandatory.
- All the exercises should be given in the question paper. The student is allowed to select by lot or question paper issued by the DOTE Exam section shall be used.

Practicum

L	Т	Р	С
1	0	4	3

DETAILED ALLOCATION OF MARK

Part	Description	Marks
А	Aim & Apparatus Required	5
В	Formulas, Tabular Column and Schematic Diagram	20
С	Observations & Calculations	25
D	Result	10
Е	Written Test (Theory Portions)	30
F	Viva voce	10
	TOTAL MARKS	100

Equipment / Facilities required to conduct the Practical Portions:

S.No.	Name of the Equipment / Accessories Required	Quantity Required
1	Gate Valve	1 No.
2	Globe Valve	1 No.
3	Centrifugal pump	1 No.
4	Compressor Test Rig	1 No.
5	Rheostat of various range	2 Nos.
6	RPS (0-12v, 0-30v)	2 Nos.
7	Ammeters (MC and MI) of various ranges	2 Nos.
8	Voltmeters (MC and MI) of various ranges	2 Nos.
9	Wattmeter (300v/5A - 2.5A/UPF)	2 Nos.

L	Т	Р	С
3	1	0	4

Theory

Introduction:

Heat transfer is vital in chemical and petrochemical industries. Understanding mechanisms like conduction, convection, and radiation is essential for operations involving heat exchange. This subject teaches students to analyze performance and design equipment such as heat exchangers, boilers, and evaporators, which are crucial across industries.

Course Objective:

• Acquire sound knowledge of modes of heat transfer: conduction, convection, and radiation, as well as heat flow in fluids through heat transfer equipment such as heat exchangers. Understand the performance of evaporators and insulation properties.

Course Outcomes:

After successful completion of this course, the students should be able to:

CO1: To comprehend the modes of heat transfer and their significance, grasp Fourier's Law
 of heat conduction for both steady state and unsteady state scenarios, understand the
 variation of thermal conductivity with temperature, and analyze heat conduction through
 composite walls and hollow cylinders, with the capability to solve associated problems.

To develop a comprehensive understanding of various heat transfer mechanisms such asCO2: convection, boiling, and radiation, along with their practical applications. To solve heat transfer problems encountered in various engineering and industrial applications.

To develop the necessary understanding of heat flow in fluids through heat exchanger

CO3: equipment, along with the skills to analyze, design, and operate various types of heat exchangers encountered in engineering and industrial settings.

To empower the knowledge of principles of evaporation, boiling point elevation, andCO4: Duhring's rule, along with the skills necessary to analyse, design, and operate evaporators effectively in various industrial processes.

To develop the necessary knowledge and skills to effectively analyze, design, andCO5: operate multiple-effect evaporators and associated equipment in various industrial processes.

1076234110	PROCESS HEAT TRANSFER	L	Т	Р	C
Theory		3	1	0	4

Pre-requisites:

Knowledge of Thermodynamics.

CO/PO Mapping:

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	2	3	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- It is advised that teachers take steps to pique pupils' attention and boost their learning confidence.
- To help students learn and appreciate numerous concepts and principles in each area, teachers should provide examples from daily life, realistic situations and real- world engineering and technological applications.
- The demonstration can make the subject exciting and foster in the students a scientific mindset. Student activities should be planned on all the topics.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome-based and employability-based.
- All demonstrations/Hand-on practices are under a simulated environment (may be followed by a real environment as far as possible).

PROCESS HEAT TRANSFER

L	Т	Р	С
3	1	0	4

Theory

Assessment Methodology:

		End Semester Examination			
	CA1	CA2	CA3	CA4	(60 marks)
Mode	Written Test (Unit I & II)	Written Test (Unit III & IV)	Quiz MCQ (Online / Offline)	Model Examination	Written Examination
Duration	2 Periods	2 Periods	1 Hour	3 Hours	3 Hours
Exam Marks	50	50	60	100	100
Convertedto	15	15	5	20	60
Marks	15		5	20	60
Tentative Schedule	6 th Week	12 th Week	13-14 th Week	16 th Week	

Note:

CA1 and CA2: Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

Answer five questions (5 X 10 Marks = 50 Marks).

Eight questions will be asked; students should write five questions. Each unit four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

CA3: 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every students (Online/Offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment.

CA4: Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

L	Т	Р	С
3	1	0	4

Question Pattern:

Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Syllabus contents

Unit I CONDUCTION				
Heat Tran	sfer – Modes of Heat Transfer – Importance of heat transfer in process units-			
Fourier's Law of heat Conduction - Steady State & unsteady state heat conduction. Heat				
conductio	n through Composite Wall (two wall only) and Hollow Cylinder (with single			
insulation) - Simple problems in conduction Thermal Conductivity & its significance.	12		
Variation	of thermal conductivity with temperature. Analogy between heat conduction			
& Electric	cal Current flow.			
Unit II	CONVECTION & RADIATION			
Convectio	on - Types of Convection - Free Convection & Forced Convection. Heat			
transfer c	oefficient & its Significance -Different modes of condensation - Drop wise			
Condensa	tion & Film wise Condensation - Effect of non-condensable gases in			
condensa	ble vapours - Condensation of superheated vapours.			
Boiling M	lechanism in Heat Transfer – Nucleate boiling & Film boiling (principles only)			
Dimensionless Numbers & their Significance in Heat Transfer- Prandlt Number, and				
Nusselt Number (Brief description only).				
Radiation Heat transfer - Reflectivity, Absorptivity & Transmissivity – Emissive Power				
& Emissivity - Concept of Black body - Stephen Boltzmann Law (statement only) &				
Kirchhoff	's Law (statement and derivation).			

Theory

L	Т	Р	С
3	1	0	4

Unit III	HEAT FLOW IN FLUIDS & HEAT EXCHANGERS				
Heat Exc	hangers - Counter current flow & Parallel flow in heat exchangers - Energy				
balance in	n heat exchangers - Heat Flux - overall heat transfer coefficient - Fouling				
factors &	t it's significance - Logarithmic mean temperature difference (LMTD)				
(derivatio	(derivation excluded). Simple problems in LMTD.				
Heat Exc	hangers: Types of Heat exchangers - Construction & Working Principle of				
Double pi	pe Heat Exchanger and Shell & Tube Heat exchanger - Functions of Baffles -	12			
Application	ons of Floating Head and U- Tube Heat Exchangers - Pitch -Triangular &				
Square Pi	tch – its advantages & disadvantages.				
Construct	ion & Working Principle of Plate type heat exchanger- concept of spiral type				
heat exch	anger (Principle only) - Heat Exchanger efficiency.				
Unit IV	EVAPORATION				
Evaporati	on - Principles of Evaporation - Factors affecting rate of evaporation -				
Capacity	& Economy - Boiling point elevation & Duhring's rule - Energy balance in				
single effe	ect evaporator- Simple problems in single effect evaporator.				
Evaporate	ors:- Types of evaporator - Calendria evaporator, Long tube vertical	12			
evaporato	r(Climbing Film) – Falling Film evaporator & Forced circulation evaporator				
– Constru	ction, operation & applications of all types of evaporators.				
Unit V	MULTIPLE EFFECT EVAPORATION AND THERMAL INSULAT	ION			
Principle	of Multiple effect Evaporation – Methods of feeding of multiple effect				
evaporato	r – Forward feed, backward feed, mixed feed and parallel feed–comparison of				
Forward f	Seed and backward feed.				
Evaporator Accessories - Steam traps and its purpose - types of steam traps- brief					
description about inverted bucket steam trap - brief description about Barometric					
condenser – purpose of condensate pot.					
Thermal Insulation -Properties of Insulting materials -hot insulation and cold					
insulation	- important types of insulating materials & their applications.				
	TOTAL HOURS	60			

1076234110		L	Т	Р	C
Theory	PROCESS HEAT TRANSFER	3	1	0	4

Text and Reference Books:

- Unit Operations of Chemical Engineering W.L.McCabe and J.C.Smith 6th Edition McGraw Hill Book Co. Singapore - 2001.
- Introduction to chemical Engineering W.L.Badger and J.T.Banchero Tata McGraw Hill Publishing Co.Ltd. New Delhi – 1997.
- 3. Unit Operations –I K A Gavhane Nirali Publications 2011.
- 4. Introduction to chemical Engineering Ghoshal, Sanyal and Dutta 1st Edition Tata McGraw Hill Publishing Co.Ltd. New Delhi 2004.

Web-based/Online Resources:

- <u>https://www.essentialchemicalindustry.org</u>
- <u>https://pubs.acs.org/journal/iecred</u>
- https://publica.fraunhofer.de/items/ffb7e060-d220-4e72-81f5-ae5e18224610
- <u>https://www.sciencedirect.com/journal/journal-of-industrial-and-engineering-chemistry</u>
- https://archive.nptel.ac.in/courses/103/103/103103032/
- <u>http://digimat.in/nptel/courses/video/103105140/L01.html</u>
- <u>https://nptel.ac.in/courses/112108149</u>
- https://onlinecourses.nptel.ac.in/noc23_ch32/preview

END SEMESTER QUESTION PATTERN - THEORY EXAM

Duration : 3 Hrs

Max. Marks : 100

Note: Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Instruction to the Question Setters:

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Theory

L	Т	Р	С
3	1	0	4

Introduction:

It gives the student the knowledge of various mechanical operations and their significance in chemical industries. With this information student can control the operation of equipment in order to separate solid-solid, solid-liquid & gas-solid systems.

Course Objective:

- To impart thorough knowledge in mechanical operations used in chemical plants.
- To impart operational skills for chemical plant operations.

Course Outcomes:

After successful completion of this course, the students should be able to:

To develop knowledge and skills in size reduction principles, laws of crushing along

- **CO1:** with calculation of the work index, methods, and equipment operation for effective industrial processes.
- **CO2:** To acquire knowledge in solid particle characterization, screening techniques, and storage/conveying methods for solids.
- **CO3:** To gain understanding in settling, centrifugation, and filtration processes, including their principles, construction, and working principles of relevant equipment.

To gain an understanding of the construction, operating principles, and applications ofvarious separation equipment, special separation techniques, and gas-solid separators in process industries.

CO5: To empower knowledge on the distinction between mixing and agitation, the purpose and working principle of agitation vessels, the role of baffles and types of impellers, and their applications. Learn about swirling, vortex formation prevention, and the principle of operation and applications of industrial mixers.

Pre-requisites:

None

1076234210		L	Т	Р	С
Theory	MECHANICAL OPERATIONS	3	1	0	4

CO/PO Mapping:

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	3	2	2	2	2
CO2	3	3	3	2	2	2	2
CO3	3	3	2	2	2	2	2
CO4	3	3	2	1	2	2	2
CO5	3	3	3	1	2	2	2

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- It is advised that teachers take steps to pique pupils' attention and boost their learning confidence.
- To help students learn and appreciate numerous concepts and principles in each area, teachers should provide examples from daily life, realistic situations and real- world engineering and technological applications.
- The demonstration can make the subject exciting and foster in the students a scientific mindset. Student activities should be planned on all the topics.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome-based and employability-based.
- All demonstrations/Hand-on practices are under a simulated environment (may be followed by a real environment as far as possible).

MECHANICAL OPERATIONS

L	Т	Р	С
3	1	0	4

Theory

Assessment Methodology:

		End Semester Examination			
	CA1	CA2	CA3	CA4	(60 marks)
Mode	Written Test (Unit I & II)	Written Test (Unit III & IV)	Quiz MCQ (Online / Offline)	Model Examination	Written Examination
Duration	2 Periods	2 Periods	1 Hour	3 Hours	3 Hours
Exam Marks	50	50	60	100	100
Converted to	15	15	5	20	60
Marks	15		5	20	60
Tentative Schedule	6 th Week	12 th Week	13-14 th Week	16 th Week	

Note:

CA1 and CA2: Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

Answer five questions (5 X 10 Marks = 50 Marks).

Eight questions will be asked; students should write five questions. Each unit four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

CA3: 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every students (Online/Offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment.

CA4: Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

Theory

L	Т	Р	С
3	1	0	4

Question Pattern:

Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Syllabus contents

Unit I	SIZE REDUCTION			
Objectives of Size Reduction – Methods of Size Reduction – Crushing Efficiency -Laws				
of Crushing - Rittinger's Law, Kick's Law & Bond's Law - Work Index - Simple				
problems	in Laws of Crushing.			
Size Redu	ction Equipment - Classification of size reduction reductions - Construction,	12		
Principle	of Working & application of the following Equipment – Blake Jaw Crusher,			
Smooth D	ouble Roll Crusher – Ball Mill – Critical Speed of Ball mill & simple problems			
in critical	Speed - Working principle of Fluid Energy Mill.			
Unit II	PROPERTIES OF SOLIDS, SCREENING & CONVEYING			
Character	ization of solid particles - Size & Shape - Sphericity - Definitions of the			
following	terms - Volume shape factor & Surface shape factor, Average particle size,			
Sauter me	an diameter, mass mean diameter and volume mean diameter, specific surface			
of the mix	ture & specific surface ratio.			
Screening – Tyler Standard screen series - Capacity & Effectiveness of screens- Screening				
Equipment - Working Principle of Trommel Screens & Vibrating Screens.				
Storage and Conveying of Solids - Hoppers, bins, silos (brief description) -Angle of				
repose - W	Vorking Principles & applications of Belt Conveyor, Screw Conveyor & Bucket			
Elevator.				

Theory

MECHANICAL OPERATIONS

L	Т	Р	C
3	1	0	4

Unit III	SEDIMENTATION, CENTRIFUGATION & FILTRATION			
	Free settling & Hindered Settling – Terminal settling Velocity, Distinguish			
between Thickener & Clarifier – Construction and Working Principle of Dorr Thickener.				
Centrifugation - Principle of Centrifugation - Construction and Working Principle of Disc				
type Centr				
• 1	 Filter Medium & It's Requirements – Filter aids & It's function – Constant 	12		
	Itration and Constant rate filtration – Filter Medium Resistance & Filter Cake			
	(definitions only) - Filtration Equipment - Construction, Principle of Operation			
& Applica	tions of Rotary Drum Filter.			
Unit IV	SEPERATION OF SOLID PARTICLES			
Constructi	on, Principle of Operation & Applications of the following Equipment:			
Mechanical Classifier - Dorr Classifier - Special Separation Techniques- Elutriation and				
Jigging. Fi	roth Flotation- Functions of Frothers and Collectors - Working principle of			
Floatation	cell. Gas - Solid Separation- Cyclone Separator, Bag Filter & Electrostatic			
Precipitato	pr.			
Unit V	MIXING AND AGITATION			
Difference	between Mixing and Agitation – Purpose of Agitation – Working Principle of			
Agitation	Vessel – Function of Baffles. Impellers, Types of Impellers & Their applications			
- Propeller, Paddles & Turbines.				
Swirling & Vortex Formation in Mixing tanks and their prevention.				
Industrial	Industrial Mixers - Principle of operation & applications of Banbury Mixer and Ribbon			
Blender.				
	TOTAL HOURS	60		

107	6234210

Theory

Text and Reference Books:

- Unit Operations of Chemical Engineering W.L.McCabe and J.C.Smith 6th Edition McGraw Hill Book Co. Singapore - 2001.
- Introduction to chemical Engineering W.L.Badger and J.T.Banchero Tata McGraw Hill Publishing Co.Ltd. New Delhi – 1997.
- 3. Unit Operations –I K A Gavhane Nirali Publications 2011.
- 4. Introduction to chemical Engineering Ghoshal, Sanyal and Dutta 1st Edition Tata McGraw Hill Publishing Co.Ltd. New Delhi 2004.

Web-based/Online Resources:

- <u>https://www.essentialchemicalindustry.org</u>
- <u>https://pubs.acs.org/journal/iecred</u>
- https://publica.fraunhofer.de/items/ffb7e060-d220-4e72-81f5-ae5e18224610
- <u>https://www.sciencedirect.com/journal/journal-of-industrial-and-engineering-chemistry</u>
- <u>https://onlinecourses.nptel.ac.in/noc20_ch27/preview</u>
- https://www.udemy.com/topic/chemical-engineering/

END SEMESTER QUESTION PATTERN - THEORY EXAM

Duration : 3 Hrs

Max. Marks : 100

Note: Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Instruction to the Question Setters:

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Theory

L	Т	Р	С
3	0	0	3

Introduction:

This subject imparts knowledge on utilizing refinery products to produce petrochemicals like C1 to C4 and aromatics compounds safely. It covers selecting appropriate processes and handling equipment for refining crude petroleum to manufacture various commercial products.

Course Objective:

On completion of the units of the syllabus the students must be able to know about:

- The manufacturing process, Physical properties and uses from C1, C2, C3 & C4 compounds.
- The manufacturing process, Physical properties and uses of Aromatic Compounds.
- Properties, Classification, manufacturing and industrial applications of Plastics.
- Various job opportunities and achievements in Petrochemical engineering.
- Understand the Petro chemical process and various types of chemical process.
- Understand the various types of unit operations and unit process.

Course Outcomes:

After successful completion of this course, the students should be able:

CO1:	To understand the petrochemical compounds which are derived from C1 compounds and its applications in various fields.
CO2:	To understand the petrochemical compounds which are derived from C2 compounds and its applications in various fields.
CO3:	To understand the petrochemical compounds which are derived from C3 compounds and its applications in various fields.
CO4:	To understand the petrochemical compounds which are derived from C4 and Aromatic compounds and its applications in various fields.
CO5:	To understand the plastics which are derived from Petrochemical compounds and its end uses in various fields.

Pre-requisites:

Basic knowledge of organic chemistry and chemical technology.

Theory

L	Т	Р	С
3	0	0	3

CO/PO Mapping:

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	2	1	1	2	2
CO2	3	3	2	1	1	2	2
CO3	3	3	2	1	1	2	2
CO4	3	3	2	1	1	2	2
CO5	3	2	2	1	1	2	2

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- It is advised that teachers take steps to pique pupils' attention and boost their learning confidence.
- To help students learn and appreciate numerous concepts and principles in each area, teachers should provide examples from daily life, realistic situations and real- world engineering and technological applications.
- The demonstration can make the subject exciting and foster in the students a scientific mindset. Student activities should be planned on all the topics.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome-based and employability-based.
- All demonstrations/Hand-on practices are under a simulated environment (may be followed by a real environment as far as possible)

PETROCHEMICAL TECHNOLOGY

L	Т	Р	С
3	0	0	3

Theory

Assessment Methodology:

		End Semester Examination			
	CA1	CA2	CA3	CA4	(60 marks)
Mode	Written Test (Unit I & II)	Written Test (Unit III & IV)	Quiz MCQ (Online / Offline)	Model Examination	Written Examination
Duration	2 Periods	2 Periods	1 Hour	3 Hours	3 Hours
Exam Marks	50	50	60	100	100
Convertedto	15	15	5	20	60
Marks	15		5	20	60
Tentative Schedule	6 th Week	12 th Week	13-14 th Week	16 th Week	

Note:

CA1 and CA2: Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

Answer five questions (5 X 10 Marks = 50 Marks).

Eight questions will be asked; students should write five questions. Each unit four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

CA3: 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every students (Online/Offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment.

CA4: Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

Theory

L	Т	Р	С
3	0	0	3

Question Pattern:

Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Syllabus contents

Unit I	C1 COMPOUNDS				
gas route, Formaldehydd	Process Description, flow diagram, Physical Properties and uses of - Methanol via synthesis gas route, Formaldehyde from methanol - Chloromethane by direct chlorination of methane - Trichloro ethylene Perchloro Ethylene by Pyrolysis of carbon tetra chloride				
Unit II	C2 COMPOUNDS				
Production by steam cr	w diagram, Physical Properties and uses of - Ethylene and acetylene acking of hydrocarbons - Ethylene dichloride - Vinyl Chloride Via lysis - Ethylene oxide by oxidation of ethylene - Ethanol amines from	9			
Unit III	C3 COMPOUNDS				
of propylene - Acetone	w diagram, Physical Properties and uses of - Isopropanol by hydration by dehydrogenation of Isopropanol - Acrylonitrile from Propylene soprene from propylene dimmer - Propylene Oxide via Chlorohydrin.	9			
Unit IV	C4 COMPOUNDS & AROMATICS				
Dehydrogenation of bu	w diagram, Physical Properties and uses of Butadiene - Butadiene from tane - Butadiene from ethanol. Process Description, flow diagram, I uses of Benzene from Alkyl Aromatics - Phenol from toluene n benzene.	9			

Theory

PETROCHEMICAL TECHNOLOGY

L	Т	Р	С
3	0	0	3

45

Unit V	PLASTIC DERIVATIVES		
Process Description, flow diagram, Physical Properties and uses of – Classification of Plastics			
- Thermosetting and Thermoplastic - Engineering Plastics. Production and uses of - Phenol			
formaldehyde Resins - I	Polyethylene - Epoxy resins – ABS plastics.		

TOTAL HOURS

Text and Reference Books:

- Dryden's Outliness of Chemical Technology M. Gopala Rao Marshall Sittig 3rd Edition -Edited and Reprinted by East-West Press - 2016.
- 2. A Text on Petro Chemicals Dr. B.K. Bhaskara Rao 5th Edition Khanna Publishers 2004.
- 3. Shreve's Chemical Process Industries Austin, G.T 5th Edition Tata Mc Graw Hill 2017.
- Encyclopedia of Chemical Technology Kirk Othmer 4th Edition Wiley Inter Science Publication - John Wiley & Sons - 1993.
- 5. Introduction to Petrochemicals Sukumar M Oxford and IBH publishing Co., 1992.
- 6. Petrochemical Process Chauvels A. and Lefebvre G Vol. 4., 2001.

Web-based/Online Resources:

- https://nptel.ac.in/courses/103103029
- <u>https://www.studocu.com/in/document/aligarh-muslim-university/applied-</u> chemistry/nptel-chemical-chemical-technology-ii/31279098

END SEMESTER QUESTION PATTERN - THEORY EXAM

Duration : 3 Hrs

Max. Marks: 100

Note: Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Instruction to the Question Setters:

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Practical

L	Т	Р	С
0	0	4	2

Introduction:

In Diploma level engineering heat transfer practical course, students learn hands-on about heat conduction, convection, and radiation. They conduct experiments, measure temperature and flow rates, and analyze data. Emphasis is on real-world applications like heat exchanger design and safety protocols. Effective communication and critical thinking skills are honed for future careers in heat transfer and related fields.

Course Objectives:

• To enable the students to apply heat transfer concepts in practical applications.

Course Outcomes (CO):

On successful completion of this course, the student will be able to:

Students will understand heat transfer principles, measure conductivity, assess **CO1:** heat loss, and apply knowledge to real-world scenarios. Students will learn about heat exchangers, their types, design, applications, and **CO2:** the differences between co-current and counter-current flow in double pipe heat exchangers. Students grasp convection heat transfer, its types, principles, applications, **CO3**: advantages, and disadvantages, along with practical applications. Students grasp condensers, their types, construction, principles, applications, and **CO4**: determine heat transfer coefficients for vertical and horizontal setups. Students grasp the concept, types, applications, advantages, and disadvantages of **CO5**: emissivity in chemical processes, while also verifying the Stefan-Boltzmann constant.

Pre-requisites:

Knowledge of Physics and Thermodynamics.

HEAT TRANSFER PRACTICAL

L	Т	Р	С
0	0	4	2

Practical CO/PO Mapping:

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	2	3	2	3	3	2	2
CO2	2	3	2	3	3	2	2
CO3	2	3	2	3	3	2	2
CO4	2	3	2	3	3	2	2
CO5	2	3	2	3	3	2	2

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.
- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies.

Practical

Assessment Methodology:

	Continuous Assessment (40 marks)			End Semester Examination	
	CA1	CA2	CA3	CA4	(60 marks)
Mode	Practical Test	Practical Test	Practical Document	Practical Test	Practical Examination
Portion	First Cycle	Second Cycle	All Exercises	All Exercises	All Exercises
Duration	2 Periods	2 Periods	Regularly	3 Hours	3 Hours
Exam Marks	50	50	Each Practical 10 Marks	100	100
Converted to	10	10	10	20	60
Marks	1	0	10	20	60
Tentative Schedule	7 th Week	14 th Week	15 th Week	16 th Week	

Note:

• CA1 and CA2: All the exercises/experiments as per the portions mentioned above should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded will be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

First Cycle : 1,2,3,4 & 5.

Second Cycle : 6,7,8,9 & 10.

SCHEME OF EVALUATION

Part	Description	Marks
А	Aim, Apparatus Required, Formulas	10
В	Tabular Column & Observations	20
C	Calculations & Result	20
	TOTAL MARKS	50

Practical

L	Т	Р	С
0	0	4	2

• CA 3: Practical document should be maintained for every exercise / experiment immediately after completion of the practice. The same should be evaluated for 10 Marks. The total marks awarded should be converted to 10 Marks for the internal assessment. The practical document should be submitted for the Practical Test and End Semester Examination with a bonafide certificate

The details of the documents to be prepared as per the instruction below.

Each exercise observation and calculations should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

This documentation can be carried out in a separate notebook or printed manual or file. The reading and calculations and graph should be written by the student manually.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

• **CA 4:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded should be converted to 20 Marks for the internal assessment.

Part	Description	Marks	
А	Aim & Apparatus Required	10	
В	Formulas, Explanations, Tabular Column	20	
С	Observations & Reading Taken	20	
D	Calculations	20	
Е	Result	20	
F	Viva voce	10	
	TOTAL MARKS		

SCHEME OF EVALUATION

L	Т	Р	С
0	0	4	2

Practical

Syllabus contents

Chapter I	Conduction		
Introduction – D	Definition of Conduction – Types – Thermal Conductivity – Heat losses		
in various metals	s – Applications – Advantages – Disadvantages of conduction.	12	
Ex. 1	Thermal Conductivity of Metal Bar.		
Ex. 2	Heat loss in pipe.		
Chapter II	Heat Exchangers		
Introduction – D	Definition of Heat Exchangers – Different Types of Heat Exchangers and		
its Design – App	plications – Advantages – Disadvantages.	12	
Ex. 3	Double Pipe Heat Exchanger by co-current Flow.		
Ex. 4	Double Pipe Heat Exchanger by Counter-current flow.		
Chapter III	Convection		
Introduction – D	efinition – Types – Construction and working principles – Applications		
– Advantages – I	Disadvantages.	12	
Ex. 5	Natural Convection Heat Transfer.		
Ex. 6	Forced Convection Heat Transfer.		
Chapter IV	Condenser		
Introduction – I	Definition – Various Types of Condensers - Construction and working		
principles – App	olications – Advantages – Disadvantages.	12	
Ex. 7	Determination of Heat Transfer co-efficient in Vertical Condenser.		
Ex. 8	Determination of Heat Transfer co-efficient in Horizontal Condenser.		
Chapter V	Radiation		
Introduction – D	efinition - Types – Important Applications in chemical process Industries		
– Advantages – Disadvantages.			
Ex. 9	Determination of Emissivity of a grey Body.	12	
Ex. 10	Verification of Stefan Boltzmann constant.		
	Total Hours	60	

END SEMESTER EXAMINATION – PRACTICAL EXAM.

Note:

- The Practical document prepared by the student should be submitted with a Bonafide Certificate.
- All the exercises have to completed, any one exercise will be given for examination.
- Practical observation note book is sufficient and no need of separate practical record note book. Submission of Practical observation note book to model practical exam and end semester practical exam is mandatory.
- All the exercises should be given in the question paper. The student is allowed to select by lot or question paper issued by the DOTE Exam section shall be used.

Part	Description	Marks
А	Aim & Apparatus Required	10
В	Formulas, Explanations, Tabular Column	20
С	Observations & Reading Taken	20
D	Calculations	20
Е	Result	20
F	Viva voce	10
	100	

DETAILED ALLOCATION OF MARKS

Practical

L	Т	Р	С
0	0	4	2

Equipment / Facilities required to conduct the Practical Portions:

S.No.	Name of the Equipment	Quantity Required
1	Thermal Conductivity of Metal Bar.	1 Nos.
2	Heat loss in pipes.	1 Nos.
3	Double Pipe Heat Exchanger by co-current Flow.	1 Nos.
4	Double Pipe Heat Exchanger by Counter-current flow.	1 Nos.
5	Natural Convection Heat Transfer.	1 Nos.
6	Forced Convection Heat Transfer.	1 Nos.
7	Vertical Condenser and Horizontal Condenser	1 Nos.
8	Emissivity apparatus.	1 Nos.
9	Stefan Boltzmann constant.	1 Nos.

Introduction:

In mechanical operations practical, students learn about industrial processes like size reduction and separation. They engage in hands-on experiments with crushers, mills, and separators. Safety protocols are emphasized, preparing students for careers in chemical engineering and related fields.

Course Objectives:

• To provide hands on experience in analyzing the size reduction and separation of particles.

Course Outcomes (CO):

On successful completion of this course, the student will be able to:

Determine the Reduction ratio and specific surface area of newly generated

- **CO1:** solid particles using size reduction equipment such as Jaw crusher, roll crusher and ball mill.
- **CO2:** Determine the screen efficiency of the given material by using sieve shaker.

CO3: using Plate & Frame Filter press and also understand the principle of separation of solid particles using gas in a cyclone separator.

CO4: Determine the settling velocity of solid particle in different regions of settling particle.

Determine the settling velocity of solid particle in different regions of settling

CO5: particle using a Cyclone Separator. Understand the settling characteristics of given slurry using Batch settling.

Pre-requisites:

None.

1076234520	MECHANICAL OPERATIONS PRACTICAL	L	Т	Р	С
Practical	MECHANICAL OFERATIONS FRACTICAL	0	0	4	2

CO/PO Mapping:

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	2	2	2	1	3
CO2	3	1	2	2	1	-	3
CO3	3	3	2	-	1	3	2
CO4	3	2	2	3	2	2	-
CO5	3	2	1	3	3	1	2

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application Based Learning: Employ a theory demonstrate practice activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.
- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies.

Practical

Assessment Methodology:

		Continuous	s Assessment (40	marks)	End Semester Examination
	CA1	CA2	CA3	CA4	(60 marks)
Mode	Practical Test	Practical Test	Practical Document	Practical Test	Practical Examination
Portion	First Cycle	Second Cycle	All Exercises	All Exercises	All Exercises
Duration	2 Periods	2 Periods	Regularly	3 Hours	3 Hours
Exam Marks	50	50	Each Practical 10 Marks	100	100
Converted to	10	10	10	20	60
Marks	1	0	10	20	60
Tentative Schedule	7 th Week	14 th Week	15 th Week	16 th Week	

Note:

• CA1 and CA2: All the exercises/experiments as per the portions mentioned above should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded will be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

First Cycle : 1,2,3,4 & 5.

Second Cycle : 6,7,8,9 & 10.

SCHEME OF EVALUATION

Part	Description	Marks
А	Aim, Apparatus Required, Formulas	10
В	Tabular Column & Observations	20
С	Calculations & Result	20
	TOTAL MARKS	50

• CA 3: Practical document should be maintained for every exercise / experiment immediately after completion of the practice. The same should be evaluated for 10 Marks. The total marks awarded should be converted to 10 Marks for the internal assessment. The practical document should be submitted for the Practical Test and End Semester Examination with a bonafide certificate

The details of the documents to be prepared as per the instruction below.

Each exercise observation and calculations should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

This documentation can be carried out in a separate notebook or printed manual or file. The reading and calculations and graph should be written by the student manually.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

• CA 4: All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded should be converted to 20 Marks for the internal assessment.

Part	Description	Marks
А	Aim & Apparatus Required	10
В	Formulas, Explanations, Tabular Column	20
C	Observations & Reading Taken	20
D	Calculations	20
Е	Result	20
F	Viva voce	10
	TOTAL MARKS	100

SCHEME OF EVALUATION

1076234520 Practical

L	Т	Р	С
0	0	4	2

Syllabus contents

Chapter I Size Reduction					
Introduction – D	efinition - Types - Importance of size reduction - Applications -				
Advantages – Dis	Advantages – Disadvantages.				
Ex. 1	Sieve Analysis.				
Ex. 2	Jaw Crusher.	25			
Ex. 3	Roller crusher.				
Ex. 4	Ball mill.				
Chapter II	Separation of Solid-Liquid and Solid-Gas Mixture				
Introduction –	Definition of separation - Types - Applications - Advantages -				
Disadvantages.					
Ex. 5	Filter press (Plate and Frame).	20			
Ex. 6	Leaf filter.				
Ex.7	Cyclone Separator.				
Chapter III	Sedimentation, Filtration and Mixing				
Introduction – D	efinition of Sedimentation, Filtration and Mixing – Types – Applications				
– Advantages – I	Disadvantages.				
Ex.8	Stoke's Law of Settling.	15			
Ex. 9	Batch Settling.				
Ex. 10	Industrial Mixer.				
	Total Hours	60			

END SEMESTER EXAMINATION – PRACTICAL EXAM.

Note:

- The Practical document prepared by the student should be submitted with a Bonafide Certificate.
- All the exercises have to completed, any one exercise will be given for examination.
- Practical observation note book is sufficient and no need of separate practical record note book. Submission of Practical observation note book to model practical exam and end semester practical exam is mandatory.
- All the exercises should be given in the question paper. The student is allowed to select by lot or question paper issued by the DOTE Exam section shall be used.

Part	Description	Marks	
А	Aim & Apparatus Required	10	
В	Formulas, Explanations, Tabular Column	20	
С	Observations & Reading Taken	20	
D	Calculations	20	
Е	Result	20	
F	Viva voce	10	
	TOTAL MARKS		

DETAILED ALLOCATION OF MARKS

1076234520	MECHANICAL OPERATIONS PRACTICAL	L	Т	Р	С
Practical	MECHANICAL OF ERATIONS FRACTICAL	0	0	4	2

Equipment / Facilities required to conduct the Practical Portions:

S.No.		Quantity
5.110.	Name of the Equipment	Required
1	Long, wide glass tube	2 Nos.
2	Measuring Jar (1Litre)	2 Nos.
3	Mixing Tank with accessories	1No.
4	Leaf Filter with accessories such as Vacuum pump, manometer etc.	1No.
5	Set of sieves and sieve shaker machine	1No.
6	Jaw Crusher	1No.
7	Double Roller Crusher	1No.
8	Ball mill with different size of balls	1No.
9	Plate and Frame filter press with accessories	1No.
10	Cyclone separator	1No.

Practicum

L	Т	Р	С
1	0	4	3

Introduction:

This subject gives the knowledge of various instruments used to measure various processes parameters like temperature, pressure, level, flow etc. This course will impart knowledge on working principle, construction, and use of these instruments and will make the students knowledgeable in various types of measuring instruments used in chemical process industries.

Course Objectives:

• To impart the basic concepts of process control and instrumentation in process industries.

Course Outcomes:

After successful completion of this course, the students should be able to:

- **CO1:** To understand the application of various Industrial instruments & control.
- **CO2:** To understand the working of various temperature measuring Instruments.
- **CO3:** To understand the working of various pressure measuring Instruments.
- **CO4:** To list out various Flow measuring Instruments.
- **CO5:** To understand the significance of automatic control system.

Pre-requisites:

None.

CO/PO Mapping:

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	2	2	1	1	2
CO2	3	3	2	2	1	1	2
CO3	3	3	2	2	1	1	2
CO4	3	3	2	2	1	1	2
CO5	3	3	2	2	1	1	2

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

L	Т	Р	С
1	0	4	3

Practicum

Instructional Strategy:

- It is advised that teachers take steps to pique pupils' attention and boost their learning confidence.
- To help students learn and appreciate numerous concepts and principles in each area, teachers should provide examples from daily life, realistic situations, and real-world engineering and technological applications.
- The demonstration can make the subject exciting and foster in the students a scientific mindset. Student activities should be planned on all the topics.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome and employability-based.
- Do not let students work on an activity or an experiment with the expected outcome, rather allow students to be honest about whatever the results of the experiment are. If the results are different from the expectations, students should do an analysis where they could be the source of error, if any.

	C	ontinuous Assess	sment (40 marks	s)	End Semester
	CA1	CA2	CA3	CA4	Examination (60 marks)
Mode	Practical Test	Practical Test	Written Test Theory	Practical Test	Practical Examination
Portion	Cycle I Exercises	Cycle II Exercises	All Units	All Exercises	All Exercises
Duration	2 Periods	2 Periods	3 Hours	3 Hours	3 hours
Exam Marks	60	60	100	100	100
Converted to Marks	10	10	15	15	60
Marks	10		15	15	60
Internal Marks	40			00	
Tentative Schedule	7 th Week	14 th Week	15 th Week	16 th Week	

Assessment Methodology:

DIRECTORATE OF TECHNICAL EDUCATION, CHENNAI - 600 025

2023 REGULATION

Practicum

L	Т	Р	С
1	0	4	3

Note:

• CA1 and CA2: All the exercises/experiments should be completed as per the portions above and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded shall be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Practical documents should be maintained for every exercise / experiment immediately after completion of the practice. The practical document should be submitted for the practical test. The same should be evaluated for 10 Marks for each exercise/experiment. The total marks awarded should be converted to 10 Marks for the practical test as per the scheme of evaluation as below.

The details of the documents to be prepared as per the instruction below.

Each exercise observation and calculations should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

This documentation can be carried out in a separate notebook or printed manual or file. The reading and calculations and graph should be written by the student manually.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

Part	Description	Marks
А	Aim & Apparatus Required	5
В	Formulas, Explanations, Tabular Column and Schematic Diagram	20
C	Calculations & Result	25
TOTAL		
D	Practical Documents (As per the portions)	10
	TOTAL MARKS	60

SCHEME OF EVALUATION

Practicum

L	Т	Р	С
1	0	4	3

• **CA 3:** Written Test for complete theory portions should be conducted for 100 Marks as per the question pattern below. The marks scored will be converted to 15 Marks for internal assessment.

Description		Marks		
Part – A	30 MCQ Questions.	30 x 1 Marks	30 Marks	
Part – B	7 Questions to be answered out of 10 Questions.	7 x 10 Marks	70 Marks	
	TOTAL			

• CA 4: All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation below. The marks awarded should be converted to 15 Marks for the internal assessment.

SCHEME OF EVALUATION

Model Practical Examination and End Semester Examination – Practical Exam

Part	Description	Marks	
А	Aim & Apparatus Required	5	
В	Formulas, Tabular Column and Schematic Diagram	20	
C	Observations & Calculations	25	
D	Result	10	
Е	Written Test (Theory Portions)	30	
F	Viva voce	10	
	TOTAL MARKS		

Practicum

PROCESS INSTRUMENTATION AND CONTROL

L	Т	Р	С
1	0	4	3

Syllabus Content

Unit I	MEASUREMENT OF TEMPERATURE, PRESSURE, LEVEL AND FI	LOW			
Ι	Temperature - Temperature measuring instruments - RTD - Thermocouples – Temperature Transmitter. Pressure- Units of Pressure - Pressure measuring instruments - Bourdon gauge - Bellow and Diaphragm pressure sensor – Pressure Transmitter. Flow rate - Flow rate measuring instruments –Coriolis flow meter- Electromagnetic flow meter - Ultrasonic flow meter- Vortex flow meter Level measurement – Radioactive level transmitter- Diaphragm level transmitter.	7			
Ex.No	Name of the Experiment				
1	Measurement of Temperature by Thermocouple module.				
2	Measurement of Temperature by of RTD module.				
3	Level measurement by using Differential Pressure (DP) Transmitter.	30			
4	Measurement of Pressure by Bourdon Pressure Transducer				
Unit II	PROCESS CONTROL				
II	 Automatic control system –significance –Terminology used in control system: controlled variable, manipulated variable, set point - process control system: open loop system and closed loop system - Feedback control system and Feed forward control system - Ratio control system and Split range control system (Principles and Purposes only). Automatic controllers: controllers- classification; based on control action such as P, I, D, PI, PD, PID (pneumatic system) – Final control element: control valves- variable speed drives. Control application in Heat Exchanger - Application of Distributed Controlled System (DCS) and PLC in Distillation column. 	8			

Practicum

PROCESS INSTRUMENTATION AND CONTROL

Ĺ	Т	Р	С
1	0	4	3

Ex.No	Name of the Experiment	
5	Study of ON- OFF controller using Temperature controller Trainer kit by monitoring the process in SCADA mode or Analog mode	
6	Study of characteristics of control valve (Linear, Equal% and Quick opening).	30
7	Study the linearity of P/I and I/P converter.	
8	Study of P, PI, PD and PID controller using Pressure controller Trainer kit by monitoring the process in SCADA mode or Analog mode	
	TOTAL HOURS	75

Suggested List of Students Activity:

- Presentation / Seminars by students on any recent technological developments based on the course.
- Periodic class quizzes conducted on a weekly / fortnightly based on the course.
- Micro project that shall be an extension of any practical lab exercise to real-world application.

Text and Reference Books:

- XI and XII standard Tamilnadu State Board Physics Text Book 2023 Edition Text book Corporation Tamil Nadu.
- Concepts of Physics Vol 1 & Vol 2 H.C.Verma 1st Edition Bharathi Bhavan Publishers
 2021.

Web-based/Online Resources:

- <u>https://www.essentialchemicalindustry.org</u>
- <u>https://pubs.acs.org/journal/iecred</u>
- <u>https://publica.fraunhofer.de/items/ffb7e060-d220-4e72-81f5-ae5e18224610</u>
- <u>https://www.sciencedirect.com/journal/journal-of-industrial-and-engineering-chemistry</u>

Practicum

L	Т	Р	С
1	0	4	3

END SEMESTER EXAMINATION – PRACTICAL EXAM.

Note:

- The Practical document prepared by the student should be submitted with a Bonafide Certificate.
- All the exercises have to completed, any one exercise will be given for examination.
- Practical observation note book is sufficient and no need of separate practical record note book. Submission of Practical observation note book to model practical exam and end semester practical exam is mandatory.
- All the exercises should be given in the question paper. The student is allowed to select by lot or question paper issued by the DOTE Exam section shall be used.

Part	Description	Marks
А	Aim & Apparatus Required	5
В	Formulas, Tabular Column and Schematic Diagram	20
C	Observations & Calculations	25
D	Result	10
Е	Written Test (Theory Portions)	30
F	Viva voce	10
	TOTAL MARKS	100

DETAILED ALLOCATION OF MARK

Practicum

L	Т	Р	С
1	0	4	3

Equipment / Facilities required to conduct the Practical Portions:

S.No.		Quantity
5.110.	Name of the Equipment	Required
	Temperature sensors - Thermocouple.	1 Nos.
	Temperature sensors – RTD.	1 Nos.
	Differential Pressure Transmitter	1 Nos.
	Bourdon Pressure Transducer	1 Nos.
	Temperature control Trainer Kit with SCADA or Analog	1 Nos.
	Pneumatic control valve (Linear, Equal % and Quick opening) set up	1 Nos.
	P/I and I/P converter	1 Nos.
	Pressure Control Trainer Kit with SCADA or Analog	1 Nos.

Theory

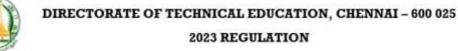
L	Т	Р	С
3	1	0	4

Introduction:

This subject equips students with the necessary skills to analyze material and energy balances in chemical processes. In industries, raw materials are processed to create diverse products, with their composition and processing conditions determining product yield and resource efficiency. Understanding stoichiometry ratios and process conditions is vital for optimizing product formation and material recycling, making stoichiometry proficiency essential for chemical engineers.

Course Objective:

- This course aims to equip students with the skills necessary to analyse chemical processes through calculations essential for chemical processing operations.
- It introduces students to the application of laws and enables them to formulate and solve material and energy balances in processes, both with and without chemical reactions.


Course Outcomes:

After successful completion of this course, the students should be able to:

- **CO1:** To excel in chemical calculations, understand the mole concept, atomic weight, molecular weights, and compositions for solids & solutions. Also, grasp concentration units (molarity, molality, normality) and understand density & specific gravity.
- **CO2:** To master the concepts related to ideal gases, including laws governing their behaviour, temperature scales, and pressure units. Understand the principles of gaseous mixtures, including Dalton's law and Amagat's law, and learn to calculate average molecular weight and density.
- **CO3:** Understand methods for solving different types of material balance problems, definitions of key terms like tie substance and inert material, to solve material balance problems in various chemical processes, and grasp concepts related to bypass, recycle, and purging operations.

To master the stoichiometry concepts like coefficients, limiting reactants, and percentages.

- **CO4:** Understand combustion principles, including calorific values, air requirements, and perform flue gas analysis.
- **CO5:** Understand energy balance concepts, including heat capacity and enthalpy changes in chemical reactions.

Pre-requisites:

Knowledge of mathematics and chemistry.

CO/PO Mapping:

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	2	2	2	2	1	2
CO2	3	3	3	2	2	1	2
CO3	3	3	3	2	2	1	2
CO4	3	3	2	3	2	1	2
CO5	3	3	2	2	3	1	3

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- It is advised that teachers take steps to pique pupils' attention and boost their learning confidence.
- To help students learn and appreciate numerous concepts and principles in each area, teachers should provide examples from daily life, realistic situations and real- world engineering and technological applications.
- The demonstration can make the subject exciting and foster in the students a scientific mindset. Student activities should be planned on all the topics.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome-based and employability-based.
- All demonstrations/Hand-on practices are under a simulated environment (may be followed by a real environment as far as possible).

CHEMICAL PROCESS CALCULATIONS

L	Т	Р	С
3	1	0	4

Theory

Assessment Methodology:

		End Semester Examination			
	CA1	CA2	CA3	CA4	(60 marks)
Mode	Written Test (Unit I & II)	Written Test (Unit III & IV)	Quiz MCQ (Online / Offline)	Model Examination	Written Examination
Duration	2 Periods	2 Periods	1 Hour	3 Hours	3 Hours
Exam Marks	50	50	60	100	100
Convertedto	15	15	5	20	60
Marks	15		5	20	60
Tentative Schedule	6 th Week	12 th Week	13-14 th Week	16 th Week	

Note:

CA1 and CA2: Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

Answer five questions (5 X 10 Marks = 50 Marks).

Eight questions will be asked; students should write five questions. Each unit four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

CA3: 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every students (Online/Offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment. **CA4:** Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

L	Т	Р	С
3	1	0	4

Theory

Question Pattern:

Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Syllabus contents

Unit I	BASIC CHEMICAL CALCULATIONS				
Basis of	calculation - Mole concept - Atomic weight, Molecular weight- Methods of				
expressin	ng the composition of solids and solutions- Weight percent & Volume percent-				
Mole per	cent and mole fraction- Concept of PPM (Parts Per Million)- Equivalent weight-	12			
Molarity,	Molality and Normality - Density and Specific gravity.				
Unit II	BEHAVIOUR OF IDEAL GASES				
Behaviou	r of Ideal gases- Ideal gas law- absolute pressure and gauge pressure- temperature				
- tempera	ature scales- unit conversion of temperature and pressure.				
Gaseous	mixtures-Dalton's law of partial pressure for gas mixtures- Amagat's law of	12			
partial ve	olume - Average molecular weight and density of gaseous mixtures.				
Unit III	MATERIAL BALANCE WITHOUT CHEMICAL REACTION				
Material	balance - Methods of solving the three basic types of material balance				
problems	s- definitions of terms tie substance and inert material - simultaneous equation				
- Calcula	ting quantities of acids required in mixed acid blending process.	12			
Material balance problems involving unit operation such as distillation, Evaporation and					
Leaching	g - Bypass operation- Recycle operation- Purging operation (Brief descriptions				
only).					
Unit IV	MATERIAL BALANCE WITH CHEMICAL REACTIONS				
Definition	of the following terms- Stoichiometric coefficient- Stoichiometric ratio- Limiting				
reactant - E	Excess reactant – Percentage of excess reactant – Percentage conversion – Percentage				
yield – Sel	ectivity – Simple problems.	12			
Combustic	on – Gross calorific value and Net calorific value-Theoretical air requirement –				
percentage	percentage excess air — Orsat analysis of Flue gases - simple problems.				

CHEMICAL PROCESS CALCULATIONS

Ĺ	Т	Р	C
3	1	0	4

Theory

Unit V	ENERGY BALANCE	
Energy	balance - definition of terms heat capacity and specific heat capacity- sensible	
heat an	d Latent heat of pure liquid - amount of heat required to raise the temperature of	12
process	fluid using heat capacity data. Enthalpy changes accompanying chemical	
reaction	n – standard heat of formation-standard heat of combustion-heat of reaction.	
	TOTAL HOURS	60

Text and Reference Books:

- Stoichiometry Bhatt, B. I., Vora, S. M, 4th Edition Tata McGraw Hill Publishing Company Ltd., - 2004
- Elementary Principles of Chemical Processes Felder, R. M., Rousseau, R. W., 3rd Edition John Wiley & Sons - 2000.
- Unit Operations of Chemical Engineering W.L.McCabe and J.C.Smith 6th Edition McGraw Hill Book Co. Singapore - 2001.
- 4. Introduction to chemical Engineering W.L.Badger and J.T.Banchero Tata McGraw Hill Publishing Co.Ltd. New Delhi 1997.
- Introduction to chemical Engineering Ghoshal, Sanyal and Dutta 1st Edition Tata McGraw Hill Publishing Co.Ltd. New Delhi - 2004.
- Basic Principles and Calculations in Chemical Engineering Himmelblau, D. M., Riggs, J. B. 8th Edition - Pearson India Education Services - 2015.
- Chemical Process Principles, Part-I Material & Energy Balances Hougen, O. A., Watson, K. M., Ragatz, R. A. - 2nd Edition - CBS Publishers & Distributors - 2004.

Web-based/Online Resources:

- <u>https://www.essentialchemicalindustry.org</u>
- <u>https://pubs.acs.org/journal/iecred</u>
- https://publica.fraunhofer.de/items/ffb7e060-d220-4e72-81f5-ae5e18224610
- <u>https://www.sciencedirect.com/journal/journal-of-industrial-and-engineering-chemistry</u>

L	Т	Р	С	
3	1	0	4	

END SEMESTER QUESTION PATTERN - THEORY EXAM

Duration : 3 Hrs

Max. Marks : 100

Note: Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Instruction to the Question Setters:

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Theory

 L
 T
 P
 C

 3
 1
 0
 4

Introduction:

Refinery mass transfer is one of the most important subjects in Petrochemical Engineering. It covers the basic concepts necessary for students to understand the principles of various mass transfer operations and their associated equipment. The subject encompasses chapters on Distillation, Extraction, Leaching, Absorption, Adsorption, Crystallization, and Equipment. These chapters explore processes used in refinery industries for the purification and separation of products from feedstocks.

Course Objective:

To understand and apply the principles of distillation, extraction, adsorption, absorption, and crystallization, as well as the construction of the corresponding equipment and its industrial applications.

Course Outcomes:

After successful completion of this course, the students should be able to:

CO1: Understand distillation principles, vapor-liquid equilibrium, and apply flash distillation. Develop skills in material balances for plate columns and tray tower design.

To master the various distillation techniques, including simple and complex methods.

CO2: Understand column construction and operation, including different tray types and down comers. Acquire knowledge of packed and fractionating columns.

Understand liquid-liquid extraction processes and their industrial applications, including

CO3: relevant equipment. Learn principles of leaching, solid preparation, and associated industrial equipment.

CO4: Understand gas absorption and packed tower operation, including packing types. Learn adsorption principles, types, isotherms, and important adsorbents for industrial use.

Acquire an understanding of crystallization processes, including super saturation preparation

CO5: and nucleation phenomena. Comprehend the operation of vacuum crystallizers with draft tube baffles and crystallizers for crystallization from melts.

Pre-requisites:

Fluid Mechanics, Mass Energy Balance, Chemical Engineering Thermodynamics

Theory

 L
 T
 P
 C

 3
 1
 0
 4

CO/PO Mapping:

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	3	3	2	2	3
CO2	3	3	3	3	3	2	3
CO3	3	3	3	3	3	2	3
CO4	3	3	3	3	3	2	3
CO5	3	3	3	3	3	2	3

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- It is advised that teachers take steps to pique pupils' attention and boost their learning confidence.
- To help students learn and appreciate numerous concepts and principles in each area, teachers should provide examples from daily life, realistic situations and real- world engineering and technological applications.
- The demonstration can make the subject exciting and foster in the students a scientific mindset. Student activities should be planned on all the topics.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome-based and employability-based.
- All demonstrations/Hand-on practices are under a simulated environment (may be followed by a real environment as far as possible).

REFINERY MASS TRANSFER

Theory

Assessment Methodology:

		Continuous Assessment (40 marks)					
	CA1	CA2	CA3	CA4	Examination (60 marks)		
Mode	Written Test (Unit I & II)	Written Test (Unit III & IV)	Quiz MCQ (Online / Offline)	Model Examination	Written Examination		
Duration	2 Periods	2 Periods	1 Hour	3 Hours	3 Hours		
Exam Marks	50	50	60	100	100		
Convertedto	15	15	5	20	60		
Marks	1	5	5	20	60		
Tentative Schedule	6 th Week	12 th Week	13-14 th Week	16 th Week			

Note:

CA1 and CA2: Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

Answer five questions (5 X 10 Marks = 50 Marks).

Eight questions will be asked; students should write five questions. Each unit four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

CA3: 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every students (Online/Offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment. **CA4:** Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

Theory

Question Pattern:

Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Syllabus contents

Unit I	BASIC PRINCIPLES OF DISTILLATION			
Distillation	n, Principle of Distillation, Raoult's law, Dalton's law, minimum boiling			
Azeotrope	s, maximum boiling azeotropes, multi- component systems. Flash distillation of			
binary mix	stures.	12		
Material balances in plate Columns-Overall Material balance for two Component systems,				
net flow rate - Determination of theoretical plates required for a tray tower using McCabe -				
Thiele me	thod.			
Unit II	DISTILLATION EQUIPMENTS			
Descriptio	n with Diagram - Simple distillation - Azeotropic distillation, Extractive			
distillation	- Molecular distillation, Steam distillation.			
Constructi	on of rectifying column (Bubble cap, Sieve plate, Valve trays), Types of down	12		
comers, Pa	acked column, Fractionating column with accessories (condenser, partial condenser			
and reboil	er) and its arrangement.			
Unit III	EXTRACTION AND LEACHING			
Liquid – I	Liquid Extraction, Liquid Equilibrium, Triangular chart and its use, Choice of			
solvent for extraction, Industrial application of Extraction - Equipment's - description				
with diagram – mixer settler Cascades, Sieve tray towers, Rotating disc contactor.				
Principles	of Leaching, Preparation of Solid and Industrial Application - Equipment's -			
Descriptio	on with diagram – Basket Extractor, Dorr Agitator, Dorr Thickener.			

REFINERY MASS TRANSFER

Theory

Unit IV ABSORPTION AND ADSORPTION		
Gas absorption principles, Equilibrium Solubility of gases in liquids, absorption with		
chemical reaction. Construction and working of Packed tower - Packing and its types -		
Definition of loading and flooding of packed towers.		
Adsorption, Industrial Application, Types of adsorption - Physical and Chemical Adsorption		
- Adsorption Isotherms - Important Adsorbents - Molecular sieves, Silica gel, Zeolite,		
Decolorizing Carbons.		
Unit V CRYSTALLISATION		
Crystallization, Purity of product, Importance of Crystal size, Equilibria and Solubility		
curve, Preparation of Super saturation, Nucleation –Origins of Crystals in crystallizers,	12	
Primary Nucleation, Secondary Nucleation, Fluid Shear Nucleation, and Contact		
Nucleation.		
Description with diagram-Vacuum Crystallizers, draft tube baffles Crystallizers,		
Crystallization from melts.		
TOTAL HOURS	60	

Text and Reference Books:

- 1. Unit Operations of Chemical Engineering W.L.McCabe and J.C.Smith 6th Edition McGraw Hill Book Co. Singapore 2001.
- 2. Introduction to chemical Engineering W.L.Badger and J.T.Banchero Tata McGraw Hill Publishing Co.Ltd. New Delhi 1997.
- 3. Mass Transfer Operation R.E. Treybal 3rd Edition Tata McGraw Hill 2017.
- Perry's Chemical Engineers Hand book Robert H. Perry and D.W. Green 7th Edition Tata McGraw Hill - 1997.

Theory

Web-based/Online Resources:

- <u>https://www.essentialchemicalindustry.org</u>
- <u>https://pubs.acs.org/journal/iecred</u>
- https://publica.fraunhofer.de/items/ffb7e060-d220-4e72-81f5-ae5e18224610
- <u>https://www.sciencedirect.com/journal/journal-of-industrial-and-engineering-chemistry</u>
- https://archive.nptel.ac.in/courses/103/103/103103145/
- <u>https://onlinecourses.nptel.ac.in/noc21_ch06/preview</u>
- <u>https://www.youtube.com/watch?v=i_OI89Mz3gc</u>

END SEMESTER QUESTION PATTERN - THEORY EXAM

Duration : 3 Hrs

Max. Marks: 100

Note: Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Instruction to the Question Setters:

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Theory

L	Т	Р	С	
3	0	0	3	

Introduction:

This course provides students with fundamental principles of plant safety and safety measures in chemical plants. It covers occupational hazards, pollutants, emissions related to air and water, treatment methods, and analysis techniques. It also addresses chemical hazards, emphasizing the importance of industrial safety.

Course Objectives:

• To impart thorough knowledge on the safe operations in chemical plants.

Course Outcomes:

After successful completion of this course, the students should be able to:

Acquire in-depth knowledge of process safety principles, practices, and protocols to

CO1: prevent accidents, protect personnel, and maintain environmental safety in process industries.

CO2: Gain thorough knowledge of fire safety principles, hazards, prevention strategies, and response techniques to effectively mitigate fire risks and protect lives and property.

Gain comprehensive understanding of industrial hazards, their causes, prevention

- **CO3:** strategies, and regulatory requirements to promote safety and mitigate risks in industrial environments.
- CO4: Develop understanding of industrial safety protocols, equipment, and risk assessment to safeguard personnel and assets in industrial environments.

Empowered to tackle environmental challenges by understanding the complexities of air

CO5: and water pollution, mastering essential monitoring techniques, and implementing proactive measures to safeguard the environment and human well-being.

Pre-requisites:

Preliminary knowledge on Environmental Pollution.

Basic Concepts of chemistry and environmental science.

1076235311	INDUSTRIAL SAFETY AND	L	Т	Р	C
Theory	POLLUTION CONTROL	3	0	0	3

CO/PO Mapping:

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	3	3	3	2	3
CO2	3	3	2	3	3	2	3
CO3	3	3	2	3	3	2	3
CO4	3	3	2	3	3	3	3
CO5	3	3	3	2	3	2	3

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- It is advised that teachers take steps to pique pupils' attention and boost their learning confidence.
- To help students learn and appreciate numerous concepts and principles in each area, teachers should provide examples from daily life, realistic situations and real- world engineering and technological applications.
- The demonstration can make the subject exciting and foster in the students a scientific mindset. Student activities should be planned on all the topics.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome-based and employability-based.
- All demonstrations/Hand-on practices are under a simulated environment (may be followed by a real environment as far as possible).

INDUSTRIAL SAFETY AND POLLUTION CONTROL

L	Т	Р	С
3	0	0	3

Theory

Assessment Methodology:

		marks)	End Semester Examination		
	CA1	CA2	CA3	CA4	(60 marks)
Mode	Written Test (Unit I & II)	Written Test (Unit III & IV)	Quiz MCQ (Online / Offline)	Model Examination	Written Examination
Duration	2 Periods	2 Periods	1 Hour	3 Hours	3 Hours
Exam Marks	50	50	60	100	100
Convertedto	15	15	5	20	60
Marks	1	5	5	20	60
Tentative Schedule	6 th Week	12 th Week	13-14 th Week	16 th Week	

Note:

CA1 and CA2: Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

Answer five questions (5 X 10 Marks = 50 Marks).

Eight questions will be asked; students should write five questions. Each unit four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

CA3: 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every students (Online/Offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment. **CA4:** Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

Theory

L	Т	Р	С
3	0	0	3

Question Pattern:

Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Syllabus contents

Unit I INDUSTRIAL ACCIDENT AND SAFETY				
Process Safety – causes of Accidents –unsafe acts and conditions– importance of safety in				
process industries - Responsibility of supervisor regarding safety - Material Safety Data				
Sheet (MS	DS) and its importance- Evaluating workers exposure to volatile toxicants ,dusts			
and noise.		9		
Accident	prevention- Differentiate Hazard and Risk - Case study of accidents in process			
industry: l	Shopal gas tragedy and LG Polymers gas leak, Vizag.			
Unit II	FIRE AND ITS PREVENTION			
Elements	of fire and Fire triangle-different causes of fire- Distinction between fires and			
explosion	Flash point and Fire point- causes of initiation of fire - classification of fires -			
causes of electrical fire - Fire alarms and smoke detectors.				
Fires extinguish techniques - working of Carbon-dioxide fire extinguisher and Dry chemical				
fire extinguisher.				
Unit III	PROCESS PLANT HAZARDS			
Hazard –	classification of hazards- causes and prevention of Pressure vessel hazards- Static			
Electricity hazards and its control- Flammability and Toxicity- Lower Flammability Limit				
(LFL) and Upper Flammability Limit (UFL) - BLEVE- Runaway chemical reaction.				
MSDS(Material Safety Data Sheet) for the following chemicals : Acetone and Toluene.				

Theory

INDUSTRIAL SAFETY AND POLLUTION CONTROL

L	L T		С	
3	0	0	3	

PREVENTIVE AND PROTECTIVE MEASURES Unit IV Permit to work system- Hot work permit, Confined space vessel work permit, safety precautions while entry into confined spaces and Height work permit- -Lockout/ Tagout procedures. 9 Functions of Pressure vacuum relief valve (PVR) - Breather vent for storage tanks- Function of Flame Arresters- Flare systems- Planning for Emergencies- Personnel protective Equipments and its importance. Unit V **POLLUTION CONTROL** Air pollution-sources and types of pollutants-Adverse effects- Air sampling and Monitoring- Ozone depletion - Green house effects- Acid rain and Global warming -Important aspects of Environment Protection Act, 1986. Water pollution- sources and types- constituents of waste water - Important terms used 9 in water treatment- BOD, COD, DO, TDS, and Biodegradability tests -Primary treatment - Coagulation and Flocculation- Secondary (Biological) treatment - Activated Sludge process - Important aspects of The Water (Prevention and control of Pollution) Act, 1974. **TOTAL HOURS** 45

Text and Reference Books:

- Learning Chemical Engineering for Process Industries Nikhlesh Mathur 1st Edition Authors press - 2015.
- 2. Introduction to Chemical Engineering Kenneth A. Solen 1st Edition Wiley Publications 2014.
- 3. Introduction to Chemical Engineering Pushpavanam.S PHI Learning Pvt Ltd, New Delhi 2012.
- 4. Environmental Pollution Control Engineering C.S.Rao 3rd Edition New Age International Publishers, New Delhi 2017.
- Wastewater Engineering: Treatment & Reuse Metcalf and Eddy 4th Edition McGraw Hill Publication - 2002.
- 6. Pollution control in process industries S P Mahajan Reprint Edition Tata McGraw Hill Publishing Company, New Delhi - 2017.
- Safety and Accident Management in the Chemical Process Industries Edition H. Heinmann, M. Dekker - 2nd Edition - 2019.

1076235311	
Theory	

L	Т	Р	С
3	0	0	3

- Instrumental Methods of Analysis, 1/e Edition B. K. Sharma Krishna Prakashan Media (P) Ltd, -2014.
- HAZOP and HAZAN Trevor Kletz 4th Edition Institution of Chemical Engineers, IChemE, UK. - 2014.

Web-based/Online Resources:

• <u>https://www.essentialchemicalindustry.org</u>

.

• <u>https://onlinecourses.nptel.ac.in/noc20_mg43/preview</u>

END SEMESTER QUESTION PATTERN - THEORY EXAM

Duration : 3 Hrs

Max. Marks: 100

Note: Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Instruction to the Question Setters:

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Theory

Introduction:

All oil refineries and other petroleum processing facilities need utilities in order to function. The subject is introduced to give the student a thorough knowledge of process utilities such as demineralization of water and its importance, refrigeration, steam generation, piping and its importance and pinch analysis, which is essentially for the processes, design, reliability and operation of these critical systems in petrochemical industries.

Course Objective:

To facilitate students' comprehension of process plant utilities and optimization techniques for enhancing various parameters in chemical industries.

Course Outcomes:

After successful completion of this course, the students should be able to:

- **CO1:** Acquire a comprehensive understanding of various aspects related to water sources, parameters, treatment methods, and the requisites of industrial water usage.
- **CO2:** Gain a comprehensive understanding of refrigeration principles, cycles, and systems, including both vapour compression and absorption cycles, as well as air refrigeration cycles.
- **CO3:** Develop practical skills and theoretical knowledge necessary to effectively operate, maintain, and optimize steam systems in industrial settings.
- **CO4:** Develop the knowledge and skills required to design, analyse, and manage piping systems effectively, contributing to the efficient and safe operation of industrial facilities across various sectors.
- **CO5:** Gain a comprehensive understanding of Pinch Analysis and its applications in optimizing energy usage and heat exchanger network synthesis.

Pre-requisites:

Chemical Engineering Thermodynamics. Chemical Technology, and Heat Transfer.

1076235312	PLANT UTILITIES	L	Т	Р	C
Theory	FLANI UTILITIES	3	0	0	3

CO/PO Mapping:

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	2	2
CO3	3	3	3	3	3	2	2
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	2	3

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- It is advised that teachers take steps to pique pupils' attention and boost their learning confidence.
- To help students learn and appreciate numerous concepts and principles in each area, teachers should provide examples from daily life, realistic situations and real- world engineering and technological applications.
- The demonstration can make the subject exciting and foster in the students a scientific mindset. Student activities should be planned on all the topics.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome-based and employability-based.
- All demonstrations/Hand-on practices are under a simulated environment (may be followed by a real environment as far as possible).

Theory

L	Т	Р	С
3	0	0	3

Assessment Methodology:

		Continuous	Assessment (40	marks)	End Semester Examination
	CA1	CA2	CA3	CA4	(60 marks)
Mode	Written Test (Unit I & II)	Written Test (Unit III & IV)	Quiz MCQ (Online / Offline)	Model Examination	Written Examination
Duration	2 Periods	2 Periods	1 Hour	3 Hours	3 Hours
Exam Marks	50	50	60	100	100
Convertedto	15	15	5	20	60
Marks	15		5	20	60
Tentative Schedule	6 th Week	12 th Week	13-14 th Week	16 th Week	

Note:

CA1 and CA2: Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

Answer five questions (5 X 10 Marks = 50 Marks).

Eight questions will be asked; students should write five questions. Each unit four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

CA3: 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every students (Online/Offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment. **CA4:** Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

L	Т	Р	С
3	0	0	3

Theory

Question Pattern:

Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Syllabus contents

Unit I	WATER AND ITS IMPORTANCE		
Sources of	water- parameters like hardness, suspended solids (SS), turbidity and alkalinity etc.,		
hard and s	soft water Requisites of industrial water and its uses-Methods of water treatment -		
flow diagr	ram-coagulation by iron compounds like alum-sedimentation - filtration - chemical	0	
softening	and demineralization (Ion Exchange Process) - Reverse osmosis and membrane	9	
separation	- Effects of impure boiler feed water - scale and sludge formation, corrosion, priming		
and foaming	ng, caustic embrittlement.		
Unit II	REFRIGERATION		
Refrigerat	ion - Definition, unit of refrigeration - coefficient of performance. Refrigeration		
cycles - Re	eversed Carnot cycle, representation on PV and TS diagram. Air refrigeration cycle -	9	
Bell Coleman air refrigeration cycle. Vapor compression and absorption cycle.			
Unit III	STEAM GENERATION		
Properties	s of steam - Problems based on enthalpy calculation for wet steam ,dry saturated		
steam, su	perheated steam types of steam generators/boilers: water tube & fire tube, Solid fuel		
fired boil	er, waste gas fired boiler, Waste heat boiler, Fluidized bed boiler. Scaling, trouble		
shooting,	blow down preparing boiler for inspection Steam traps, pressure reducing valves	9	
(PRV), s	team ejectors, boiler mountings and accessories: feed water pump, injector,		
economizer, air preheater, super heater, pressure gauge, water level indicator, safety valve etc.			
Unit IV	PIPING AND ITS IMPORTANCE		
Piping: Role & scope of piping, line diagram, Process flow -Diagram and piping and instrumentation diagram-Piping networks for water, steam, condensate and air.			

Theory

PLANT UTILITIES

L T P C 3 0 0 3

Unit V	PINCH ANALYSIS	
Pinch Ana	lysis: Problem representation, temperature enthalpy diagram, simple match matrix.	
Heat content diagram, Temperature interval diagram. Heat Exchanger Network Synthesis using		
Pinch tech	nology.	
	TOTAL HOURS	45

Text and Reference Books:

- 1. Jack Broughton, Process Utility Systems: Introduction to Design, Operation and Maintenance, IChemE, 2004.
- 2. Thermal Engineering Mahesh M Rathore Tata McGraw Hill 2010.
- Chemical Process Design and Integration Robin Smith 2nd Edition John Wiley & Sons Limited - 2010.
- 4. Water Treatment for industrial and other uses Nordell Eskel Reinhold Publishing Corporation, New York - 1961.
- 5. Plant Utilities Dr. Mujawar Kindle Edition Nirali Prakashan Publication 2017.
- 6. Plant Utilities D.B. Dhone 1st Edition Nirali Prakashan Publication 2018.
- 7. Thermal Engineering P.L.Balleney 9th Edition Khanna Publisher New Delhi 1978.

Web-based/Online Resources:

- <u>https://www.essentialchemicalindustry.org</u>
- https://onlinecourses.nptel.ac.in/noc22_ch24/preview

END SEMESTER QUESTION PATTERN - THEORY EXAM

• Duration : 3 Hrs

Max. Marks : 100

- Note: Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.
- Instruction to the Question Setters:
- Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

1075235313		L	Т	Р	C
Theory	DRILLING ENGINEERING	3	0	0	3

Introduction:

Drilling engineering, part of petrochemical engineering, involves designing and implementing safe and cost-effective well drilling procedures. Engineers work closely with various stakeholders to minimize costs, ensure worker safety, gather essential geological data, and protect the environment.

Course Objective:

To comprehend well planning, drilling methods, equipment, and the significance of drilling fluids and hydraulics. Identify casing types, understand cementation, and design cement slurries. Learn directional drilling, handling techniques, well testing fundamentals, and completion strategies.

Course Outcomes:

After successful completion of this course, the students should be able to

- **CO1:** Acquire the knowledge and skills necessary to comprehend drilling practices and effectively manage drilling fluid systems in real-world scenarios.
- CO2: Equipped with the knowledge and skills necessary to effectively manage drilling hydraulics and maintain well control during drilling operations.
- **CO3:** To possess the knowledge and skills necessary to design and implement effective casing strategies to ensure the integrity and safety of oil and gas wells.

CO4: Commenting processes, and be equipped with the skills necessary to effectively execute

cementing operations in oil and gas wells.

Acquire the knowledge and skills necessary to plan and execute directional drilling

CO5: operations and implement appropriate well completion strategies in diverse geological settings.

Pre-requisites:

Knowledge of Petroleum Refining.

1075235313		L	Т	Р	С
Theory	DRILLING ENGINEERING	3	0	0	3

CO/PO Mapping:

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	2	2	3	1	2
CO2	3	3	2	3	2	1	2
CO3	3	3	3	2	2	1	2
CO4	3	3	1	3	2	1	2
CO5	3	3	2	2	3	1	2

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- It is advised that teachers take steps to pique pupils' attention and boost their learning confidence.
- To help students learn and appreciate numerous concepts and principles in each area, teachers should provide examples from daily life, realistic situations and real- world engineering and technological applications.
- The demonstration can make the subject exciting and foster in the students a scientific mindset. Student activities should be planned on all the topics.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome-based and employability-based.
- All demonstrations/Hand-on practices are under a simulated environment (may be followed by a real environment as far as possible).

1075235313		L	Т	Р	C
Theory	DRILLING ENGINEERING	3	0	0	3

Assessment Methodology:

		Continuous	Assessment (40	marks)	End Semester Examination
	CA1	CA2	CA3	CA4	(60 marks)
Mode	Written Test (Unit I & II)	Written Test (Unit III & IV)	Quiz MCQ (Online / Offline)	Model Examination	Written Examination
Duration	2 Periods	2 Periods	1 Hour	3 Hours	3 Hours
Exam Marks	50	50	60	100	100
Convertedto	15	15	5	20	60
Marks	15		5	20	60
Tentative Schedule	6 th Week	12 th Week	13-14 th Week	16 th Week	

Note:

CA1 and CA2: Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

Answer five questions (5 X 10 Marks = 50 Marks).

Eight questions will be asked; students should write five questions. Each unit four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

CA3: 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every students (Online/Offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment. **CA4:** Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

1075235313		L	Т	Р	C
Theory	DRILLING ENGINEERING	3	0	0	3

Question Pattern:

Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Syllabus contents

Unit I	DRILLING AND DRILLING FLUID		
	on of drilling - Types of Drilling Methods - Cable Tool Drilling, Rotary Drilling -		
Rotary Dri	lling Rig and its Components - Drilling Process - Types of Rotary Drilling Rigs.		
Introductio	on - Drilling Fluid Circulating System - Classification of Drilling Fluids - Water-	0	
base Mud,	Oil-based Mud, Air or Gas-base Mud, Foam, Special Types of Muds. Composition	9	
of Drilling	Fluids - Mud Additives - Chemical Additives, Additives for Water-based Mud,		
Additives f	for Oil-based Mud.		
Unit II	DRILLING HYDRAULICS AND WELL CONTROL SYSTEM		
Introductio	on - Types of Fluids, Flow Regimes, Laminar Flow, Turbulent Flow, Transitional		
Flow - Hyd	drostatic Pressure Calculation, Liquid Columns, Gas Columns, Fluid Flow through		
Pipes - Fluid Flow through Drill Bits.			
Introductio	on, Well Control System, Well Control Principles, Warning Signals of Kicks,	9	
Primary In	dicators, Secondary Indicators, BOP Equipment for Well Control System.		
Unit III	CASING DESIGN		
Introduction	, Importance of Casing String, Types of Casing String, Classification and Properties		
of Casing,	Manufacturing of Casing, Rig-site Operation, Handling Procedures, Running	9	
Procedures,	Landing Procedures.		
Unit IV	CEMENTING		
Introduction	, Applications of Oil Well Cements, Cement Production, Classifications of Oil Well		
Cements, C	ement Properties, Types of Cementing, Primary Cementing, Squeeze Cementing,		
Plug Cemer	nting, Liner Cementing, Oil Well Cement Additives, Cementing Design Process,	9	
Mechanics of	of Cementing, Cementing Equipment, Cementing Processes.		

1075235313	DRILLING ENGINEERING	L	Т	Р	C	
Theory	DRILLING ENGINEERING	3	0	0	3	

Unit V HORIZONTAL, DIRECTIONAL DRILLING AND WELL COMPLETION					
Introduction	n, Functions, Basic Terminologies, Types of Directional Drilling, Horizontal				
Drilling, Multilateral Drilling, Extended Reach Drilling (ERD), Coiled Tubing Drilling (CTD),					
Well Planning Trajectory, Directional Patterns, Directional Drilling Tools, Well Survey.					
Introduction, History of Well Completion, Requirements for Well Completion, Types of Well					
Completion	Completion, Open-hole Completion,				
Uncemented Liner Completions, Cased and Cemented Completions, Perforated Completion,					
Multi-Zone Completions, Factors Influencing Well Completion Design.					
	TOTAL HOURS	45			

Text and Reference Books:

- 1. Petroleum Engineering: Drilling and Well Completion Carl Gatlin Prentice-Hall, Inc., 1960.
- 2. Drilling Engineering J.J. Azar and G. Robello Samuel Pennwell Books 2007.
- 3. Working Guide to Drilling Equipment and Operations William Lyons Gulf Publishing 2009.
- 4. Drilling Technology Devereux S PennWell Publishing Company 1999.
- 5. Practical Well Planning and Drilling Devereux S PennWell Publishing Company 1998.

Web-based/Online Resources

- <u>https://onlinecourses.nptel.ac.in/noc23_mm24/preview</u>
- <u>https://www.youtube.com/watch?v=wjm5k6Kf-RU</u>

END SEMESTER QUESTION PATTERN - THEORY EXAM

Duration : 3 Hrs

Max. Marks : 100

Note: Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Instruction to the Question Setters:

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Practical

L	Т	Р	С
0	0	4	2

Introduction:

In chemical engineering mass transfer practicals, students explore distillation, absorption, and extraction through hands-on experiments. They learn to operate equipment like columns and towers while prioritizing safety. These sessions prepare students for careers in petrochemicals, pharmaceuticals, and environmental engineering.

Course Objectives:

- To enable the students in interpreting the concepts of mass transfer
- To provide hands-on experience in mass transfer operations.

Course Outcomes (CO):

On successful completion of this course, the student will be able to

CO1: To understand Verification of Rayleigh equation and vapor liquid equilibrium by using simple distillation and also determine the vaporization efficiency of steam distillation.
 CO2: To understand the concept of decolorization by adsorption and also measurement of diffusivity of given acetone sample.
 CO3: Determine the extraction efficiency of Liquid-Liquid Extraction system and also estimate the percentage recovery of oil from oilseed by leaching.
 CO4: Determine the rate of drying using batch dryer and also measuring the humidity of air using wet and dry bulb thermometers.
 CO5: Determine yield of crystallization.

Pre-requisites:

Knowledge of Chemistry.

MASS TRANSFER PRACTICAL

L	Т	Р	С
0	0	4	2

Practical

CO/PO Mapping:

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	2	3	1	2	2	1	1
CO2	2	3	1	2	2	1	1
CO3	2	3	1	2	2	1	1
CO4	2	3	1	2	2	1	1
CO5	2	3	1	2	2	1	1

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory demonstrate practice activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.
- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies.

Practical

Assessment Methodology:

		End Semester Examination			
	CA1	CA2	CA3 CA4		(60 marks)
Mode	Practical Test	Practical Test	Practical Document	Practical Test	Practical Examination
Portion	First Cycle	Second Cycle	All Exercises	All Exercises	All Exercises
Duration	2 Periods	2 Periods	Regularly	3 Hours	3 Hours
Exam Marks	50	50	Each Practical 10 Marks	100	100
Converted to	10	10	10	20	60
Marks	1	0	10	20	60
Tentative Schedule	7 th Week	14 th Week	15 th Week	16 th Week	

Note:

• CA1 and CA2: All the exercises/experiments as per the portions mentioned above should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded will be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

First Cycle : 1,2,3,4 & 5.

Second Cycle : 6,7,8,9 & 10.

SCHEME OF EVALUATION

Part	Description	Marks
А	Aim, Apparatus Required, Formulas	10
В	Tabular Column & Observations	20
С	Calculations & Result	20
	TOTAL MARKS	50

Practical

CA 3: Practical document should be maintained for every exercise / experiment immediately after completion of the practice. The same should be evaluated for 10 Marks. The total marks awarded should be converted to 10 Marks for the internal assessment. The practical document should be

submitted for the Practical Test and End Semester Examination with a bonafide certificate

The details of the documents to be prepared as per the instruction below.

Each exercise observation and calculations should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

This documentation can be carried out in a separate notebook or printed manual or file. The reading and calculations and graph should be written by the student manually.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

• CA 4: All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded should be converted to 20 Marks for the internal assessment.

Part	Description	Marks
Α	Aim & Apparatus Required	10
В	Formulas, Explanations, Tabular Column	20
С	Observations & Reading Taken	20
D	Calculations	20
Е	Result	20
F	Viva voce	10
	TOTAL MARKS	100

SCHEME OF EVALUATION

MASS TRANSFER PRACTICAL

Practical

Syllabus contents

Chapter I	DISTILLATION			
Distillation –	Principle – Types of distillation – Simple Distillation principle – vapour			
liquid equilib	rium – Raleigh equation – Application – Steam Distillation principle –			
Relative Volatility - Application – Advantage and disadvantages.				
Ex. 1	Verify Rayleigh's equation and material balance for simple distillation.	18		
Ex. 2	Plot the vapor - liquid equilibrium curve for simple distillation of ethanol-water system of given composition by using conventional method or Virtual method.			
Ex. 3	Estimate the vaporization efficiency for steam distillation.			
Chapter II	DIFFUSION & ADSORPTION			
Diffusion – Pr	inciple – Types of Diffusion – Diffusivity – Measurement of Diffusivity.			
Adsorption – I	Principle – Adsorbents – Types of Adsorbents – Decolorization by Adsorption			
- Application.		12		
Ex. 4	Determine the diffusivity of given acetone sample by using conventional method or Virtual method.			
Ex. 5	Decolorization by Adsorption.			
Chapter III EXTRACTION & LEACHING				
Extraction – P	rinciple – Types of Extraction – Liquid-Liquid Extraction – Triangular Chart			
and its uses –	Applications.			
Solid-Liquid E	Extraction – Principle – Adsorbent - % recovery of oil in seed – Application.	12		
Ex. 6	Determine the extraction efficiency of Liquid-Liquid Extraction system.			
Ex.7	Estimate the percentage recovery of oil from oilseed by single stage leaching.			
Chapter IV DRYING & HUMIDIFICATION				
Drying – Princ	ciple – Mechanism – Moisture content – Wet basis and Dry basis – Drying			
characteristics – Application – Advantages and Disadvantages.				
Humidification – Principle – Wet Bulb Temperature – Dry Bulb Temperature – Application -				
Advantages an	nd Disadvantages.			

1076235420	MASS TDANSEED DDACTICAI	L	Т	Р	С
Practical	MASS TRANSFER PRACTICAL		0	4	2
				ľ	

Ex.8	Ex.8 Estimate the rate of drying for the given sample using batch dryer.			
Ex. 9	Estimate the humidity of air using wet and dry bulb thermometers.			
Chapter IV	CRYSTALLIZATION			
Crystallization – Principle – Mechanism of crystallization – Types of crystallization – Purity				
- Yield - Calc	- Yield - Calculation of Yield - Application - Advantages and Disadvantages.			
Ex. 10 To determine the yield of crystals of crystallization process.				
Total Hours				

Note : Out of 10 experiments, the above mentioned two experiments (Ex. 2 & 4) may be done by conventional method or by using virtual lab simulator developed by Initiative of Ministry of Education under the National Mission on Education using the below link.

http://www.vlab.co.in/ba-nptel-labs-chemical-engineering.

END SEMESTER EXAMINATION – PRACTICAL EXAM.

Note:

- The Practical document prepared by the student should be submitted with a Bonafide Certificate.
- All the exercises have to completed, any one exercise will be given for examination.
- Practical observation note book is sufficient and no need of separate practical record note book. Submission of Practical observation note book to model practical exam and end semester practical exam is mandatory.
- All the exercises should be given in the question paper. The student is allowed to select by lot or question paper issued by the DOTE Exam section shall be used.

Practical

L	Т	Р	С
0	0	4	2

DETAILED ALLOCATION OF MARKS

Part	Description	Marks	
А	Aim & Apparatus Required	10	
В	Formulas, Explanations, Tabular Column	20	
С	Observations & Reading Taken	20	
D	Calculations	20	
Е	Result	20	
F	Viva voce	10	
	TOTAL MARKS		

Equipment / Facilities required to conduct the Practical Portions:

S.No.		Quantity
5.INU.	Name of the Equipment	Required
1	Simple Distillation Apparatus	1 No.
2	Steam Distillation Apparatus	1 No.
3	Diffusivity Measurements Apparatus	1 No.
4	Decolourization by Adsorption Equipment	1 No.
5	Liquid-Liquid Extraction Apparatus	1 No.
6	Soxhlet Extractor	1 No.
7	Drier	1 No.
8	wet and dry bulb thermometers	1 No.
9	Crystallization Apparatus	1 No.

Practical

Introduction:

In chemical process calculation for diploma chemical engineering, students learn fundamental calculations for chemical processes. Topics include material and energy balances, and stoichiometry. Practical exercises apply these concepts to real-world scenarios, preparing students for careers in various industries.

Course Objectives:

- Equip students with the ability to operate a variety of unit operations and plants under different process variable conditions using simulators.
- Emphasize the importance of simulators and explore their applications in distributed control systems.
- Provide hands-on experience to students in monitoring and controlling industrial processes through dynamic graphics such as mimics, bar graphs, trends, and alarms.

Course Outcomes (CO):

On successful completion of this course, the student will be able to

- CO1: Master adjustments, analyze changes, identify malfunctions, and conduct experiments using simulators for Batch Reactor and Continuous Stirred Tank Reactor modules. Understand the principles of heat transfer in double pipe heat exchangers through
- **CO2:** simulation, including temperature profiles, heat transfer coefficients, and overall heat transfer rates.
- CO3: Master simulation techniques for size reduction with ball mills, rotary driers for solids drying, and fractionation columns for distillation of binary mixtures.

Gain expertise in simulating level and flow control in vessels of varying sizes,

- **CO4:** analyzing flow through pipes, and understanding the operation of centrifugal pumps through simulation.
- **CO5:** Master the simulation of fluidized bed and packed bed columns, including their operational principles, performance characteristics, and optimization techniques.

Pre-requisites:

Knowledge of Chemical Process.

1076235521	CHEMICAL PROCESS SIMULATION LAB	L	Т	Р	С
Practical	CHEWICAL I ROCESS SIWOLATION LAD	0	0	4	2

CO/PO Mapping:

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	2	3	2	3	1	1	2
CO2	3	2	2	3	1	1	2
CO3	3	2	3	3	1	1	2
CO4	3	3	3	3	1	1	2
CO5	3	3	3	3	1	1	2

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory demonstrate practice activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.
- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies.

Assessment Methodology:

		Continuous	s Assessment (40) marks)	End Semester Examination
	CA1	CA2	CA3	CA4	(60 marks)
Mode	Practical Test	Practical Test	Practical Document	Practical Test	Practical Examination
Portion	First Cycle	Second Cycle	All Exercises	All Exercises	All Exercises
Duration	2 Periods	2 Periods	Regularly	3 Hours	3 Hours
Exam Marks	50	50	Each Practical 10 Marks	100	100
Converted to	10	10	10	20	60
Marks	1	0	10	20	60
Tentative Schedule	7 th Week	14 th Week	15 th Week	16 th Week	

Note:

• CA1 and CA2: All the exercises/experiments as per the portions mentioned above should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded will be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

First Cycle : 1,2,3,4 & 5.

Second Cycle : 6,7,8,9 & 10.

SCHEME OF EVALUATION

Part	Description	Marks
А	Aim, Basic Command	10
В	Procedure	20
С	Printout & Result	20
	TOTAL MARKS	50

• CA 3: Practical document should be maintained for every exercise / experiment immediately after completion of the practice. The same should be evaluated for 10 Marks. The total marks awarded should be converted to 10 Marks for the internal assessment. The practical document should be submitted for the Practical Test and End Semester Examination with a bonafide certificate

The details of the documents to be prepared as per the instruction below.

Each exercise observation and calculations should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

This documentation can be carried out in a separate notebook or printed manual or file. The reading and calculations and graph should be written by the student manually.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

• **CA 4:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded should be converted to 20 Marks for the internal assessment.

Part	Description	Marks
А	Aim	10
В	Procedure	20
С	Execution	20
D	Printout	20
Е	Result	20
F	Viva voce	10
	TOTAL MARKS	100

SCHEME OF EVALUATION

1076235521	
------------	--

L

0

Syllabus contents

Chapter I	REACTOR KINECTICS						
Change the H	P,I,D values and process parameters and observe the change in						
trend, bar grap	oh and mimics.						
Attend the n	Attend the malfunction occurring in the plant then restoring to its design						
conditions.							
Perform the ex-	xperiments using the simulator by varying the process variables and						
tabulate the res	sults.	12					
Practice the al	bove exercise on the following modules given below using process						
simulator.							
Ex. 1	Batch Reactor / Reaction kinetic studies in Batch Reactor.						
Ex. 2	Continuous Stirred Tank Reactor.						
Chapter II	Chapter II HEAT EXCHANGER EQUIPMENT						
Ex. 3	Double pipe Heat exchanger.	6					
Chapter III	DRYING, DISTILLATION AND SIZE REDUCTION						
Ex. 4	Size reduction using Ball mill / Drying characteristics of solids using Rotary Drier.	12					
Ex. 5	Fractionation column for the distillation of binary mixture.	12					
Chapter IV	LEVEL , FLOW CONTROL AND PUMP						
Ex. 6	Level and flow control in different sizes of vessel.						
Ex. 7	Flow through pipes.	18					
Ex. 8	Centrifugal pump.						
Chapter V	FLUIDIZED AND PACKED COLUMN						
Ex. 9	Fluidized bed column.						
Ex. 10	Packed bed column.	12					
	Total Hours	60					

END SEMESTER EXAMINATION – PRACTICAL EXAM.

Note:

- The Practical document prepared by the student should be submitted with a Bonafide Certificate.
- All the exercises have to completed, any one exercise will be given for examination.
- Practical observation note book is sufficient and no need of separate practical record note book. Submission of Practical observation note book to model practical exam and end semester practical exam is mandatory.
- All the exercises should be given in the question paper. The student is allowed to select by lot or question paper issued by the DOTE Exam section shall be used.

DETAILED ALLOCATION OF MARKS

Part	Description	Marks		
А	Aim	10		
В	Procedure	20		
С	Execution	20		
D	Printout	20		
Е	Result	20		
F	Viva voce	10		
	TOTAL MARKS			

Equipment / Facilities required to conduct the Practical Portions:

S.No.	Name of the Equipment / Facilities required	Quantity Required
1	Computer	Required Quantities
2	Printer	1 No.
3	Simulation Software / Virtual Lab	

1075235522	ΑΝΑΙ ΥΤΙΩΑΙ Ι ΑΦ	L	Т	Р	С
Practical	ANALYTICAL LAB	0	0	4	2

Introduction:

Analysis of various chemical commodities is necessary for controlling the quality of product in industry. This can be achieved in handling various analyses in the laboratory. The students can be learned all these by doing experiments in the practical classes.

Course Objectives:

To train the students on basic principles involved in estimation and Characterization of industrially important materials like Water, Oils and Fat, Soap, Cement, Bleaching powder, Glycerol, and Sucrose.

Course Outcomes (CO):

On successful completion of this course, the student will be able to

- CO1: Skill in water analysis techniques including EDTA method for hardness and pH measurement using pH meters, enabling accurate assessment of water quality parameters.
- CO2: Proficiency in analyzing oil properties, including acid value and saponification, as well as assessing soap characteristics like total fatty matter content.
- **CO3:** Ability in analyzing cement composition, including calcium oxide and mixed oxide content, enabling accurate assessment of cement quality and properties.
- **CO4:** Proficiency in analyzing sugar and glycerol purity using methods such as Dichromate, facilitating accurate assessment of their quality and properties.

Mastery in determining available chlorine in bleaching powder through calibration, titration

CO5: techniques, and safety protocols, ensuring precise and safe assessment of bleaching powder quality.

Pre-requisites:

Knowledge of Chemistry.

1075235522		L	Т	Р	С
Practical	ANALYTICAL LAB	0	0	4	2

CO/PO Mapping:

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	2	3	2	1	2
CO2	3	3	2	3	2	1	2
CO3	3	3	2	3	2	1	2
CO4	3	3	2	3	2	1	2
CO5	3	3	2	3	2	1	2

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application Based Learning: Employ a theory demonstrate practice activity strategy throughout the course to ensure outcome driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.
- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies.

Practical

Assessment Methodology:

		Continuous	S Assessment (40	marks)	End Semester Examination
	CA1	CA2	CA3	CA4	(60 marks)
Mode	Practical Test	Practical Test	Practical Document	Practical Test	Practical Examination
Portion	First Cycle	Second Cycle	All Exercises	All Exercises	All Exercises
Duration	2 Periods	2 Periods	Regularly	3 Hours	3 Hours
Exam Marks	50	50	Each Practical 10 Marks	100	100
Converted to	10	10	10	20	60
Marks	1	0	10	20	60
Tentative Schedule	7 th Week	14 th Week	15 th Week	16 th Week	

Note:

• CA1 and CA2: All the exercises/experiments as per the portions mentioned above should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded will be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

First Cycle : 1,2,3,4 & 5.

Second Cycle : 6,7,8,9 & 10.

SCHEME OF EVALUATION

Part	Description	Marks	
А	Aim, Apparatus Required, Formulas	10	
В	Tabular Column & Observations	20	
С	Calculations & Result	20	
	TOTAL MARKS		

1075235522	ANAL VITICAL LAD	L	Т	Р	С
Practical	ANALYTICAL LAB	0	0	4	2

• CA 3: Practical document should be maintained for every exercise / experiment immediately after completion of the practice. The same should be evaluated for 10 Marks. The total marks awarded should be converted to 10 Marks for the internal assessment. The practical document should be submitted for the Practical Test and End Semester Examination with a bonafide certificate

The details of the documents to be prepared as per the instruction below.

Each exercise observation and calculations should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

This documentation can be carried out in a separate notebook or printed manual or file. The reading and calculations and graph should be written by the student manually.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

• CA 4: All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded should be converted to 20 Marks for the internal assessment.

Part	Description	Marks	
А	Aim & Apparatus Required	10	
В	Formulas, Explanations, Tabular Column	20	
C	Observations & Reading Taken	20	
D	Calculations	20	
Е	Result	20	
F	Viva voce	10	
	TOTAL MARKS		

SCHEME OF EVALUATION

ANALYTICAL LAB

L	Т	Р	С
0	0	4	2

Practical

Syllabus contents

Chapter I	WATER ANALYSIS					
Sources of wate	er - Hardness of Water - Types of Hardness - Measurement of Hardness by					
EDTA method.	EDTA method.					
pH – Definition –Measurement of pH for Sample.						
Ex. 1	Estimation of Hardness of water by EDTA method.					
Ex. 2	Determination of PH using PH meter.					
Chapter II	OIL AND FAT ANALYSIS					
Oil – Definition –	Method of analysis of oil – Estimation of Acid valve and Saponification of					
oil.						
Soap – Introductio	n – Classification - Total fatty matter of soap.	18				
Ex. 3	Estimation of Acid value of Oil.	18				
Ex. 4	Estimation of Saponification of Oil.					
Ex. 5	Estimation of Total Fatty Matter content of soap.					
Chapter III	CEMENT ANALYSIS					
Introduction – Cor	nposition – Types of cement – Analysis of calcium oxide – Analysis of					
mixed oxide.		12				
Ex. 6	Estimation of calcium oxide content of cement.	12				
Ex. 7	Estimation of Mixed Oxide content of cement.					
Chapter IV	PURITY ANALYSIS OF SUCROSE AND GLYCEROL					
Sucrose – Introduc	tion – Classification – Unit of Sugar – Brix – Purity of Sugar analysis.					
Glycerol – Introdu	ction – Different analysis Method – purity of glycerol by Dichromate					
method.						
Ex. 8	Determination of purity of Sucrose.					
Ex. 9	Estimation of purity of Glycerol by Dichromate method.					

ANALYTICAL LAB

L	Т	Р	С
0	0	4	2

Chapter V ANALYSIS OF BLEACHING POWDER				
Introduction – Available chlorine of bleaching powder – safety precaution – Quality Calibration				
– Titration Technics – Application.				
Ex. 10	Determination of available chlorine in Bleaching Powder.			
Total Hours				

END SEMESTER EXAMINATION – PRACTICAL EXAM.

Note:

- The Practical document prepared by the student should be submitted with a Bonafide Certificate.
- All the exercises have to completed, any one exercise will be given for examination.
- Practical observation note book is sufficient and no need of separate practical record note book. Submission of Practical observation note book to model practical exam and end semester practical exam is mandatory.
- All the exercises should be given in the question paper. The student is allowed to select by lot or question paper issued by the DOTE Exam section shall be used.

DETAILED ALLOCATION OF MARKS

Part	Description	Marks	
А	Aim & Apparatus Required	10	
В	Formulas, Explanations, Tabular Column	20	
С	Observations & Reading Taken	20	
D	Calculations	20	
Е	Result	20	
F	Viva voce	10	
	TOTAL MARKS		

L	Т	Р	С
0	0	4	2

Practical

Equipment / Facilities required to conduct the Practical Portions:

S.No.		Quantity
5.110.	Name of the Equipment / Glasswares	Required
1	Burettes 50 ml	5 Nos.
2	Pipettes 25 ml, 20 ml, 10 ml	5 Nos.
3	Conical flask 500 ml, 250 ml, 100 ml	5 Nos.
4	Burette stand with clamp	10 Nos.
5	Round bottomed flask 500 ml, 250 ml	5 Nos.
6	Liebig's condenser	2 Nos.
7	Distillation set	5 Nos.
8	Funnels & Separating funnels	5 Nos.
9	Watch Glass 6",3",3"	5 Nos.
10	Wash bottles plastics	5 Nos.
11	Tripod stand & Wire gauge	1 No.
12	Hot plate & Muffle Furnace	1 No.
13	Silica Crucible with lid	1 No.
14	Buchner funnel	2 Nos.
15	Suction pump	1 No.
16	Aspirator bottles	4 Nos.
17	Refractometer	1 No.

L	Т	Р	С
0	0	4	2

Introduction:

In Diploma level engineering education to skill development especially working with instruments and Equipment's play a vital role. These can be achieved by experience in handling various equipment. This is accomplished by doing various experiments in practical classes.

Course Objectives:

• To enhance the analytical ability of students considering health, safety and environment

Course Outcomes (CO):

On successful completion of this course, the student will be able to:

- **CO1:** Understand the principles and methods for estimating and improving removal efficiency of both temporary and permanent water hardness.
- **CO2:** Demonstrate proficiency in assessing water quality through the estimation of dissolved oxygen levels, biochemical oxygen demand (BOD), and chemical oxygen demand (COD).
- **CO3:** Analyze and interpret data to determine the effectiveness of water treatment processes by calculating percentage removal of BOD and COD.
- **CO4:** Gain practical skills in heavy metal analysis, including the estimation of hexavalent chromium content and assessing the percentage removal of chromium.
- **CO5:** Apply knowledge of adsorption processes to evaluate and enhance color removal efficiency in effluent water treatment.

Pre-requisites:

Knowledge of Chemistry.

1076235523	ENVIRONMENTAL ENGINEERINGB LAB	L	Т	Р	С
Practical	ENVIRONMENTAL ENGINEERINGD LAD	0	0	4	2

CO/PO Mapping:

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	2	1	2	3	2	3
CO2	3	3	2	3	3	2	3
CO3	3	3	3	3	3	2	3
CO4	3	3	2	3	3	2	2
CO5	3	3	2	2	3	2	3

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory demonstrate practice activity strategy throughout the course to ensure outcome driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.
- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies.

Practical

Assessment Methodology:

		End Semester Examination			
	CA1	CA2	CA3	CA4	(60 marks)
Mode	Practical Test	Practical Test	Practical Document	Practical Test	Practical Examination
Portion	First Cycle	Second Cycle	All Exercises	All Exercises	All Exercises
Duration	2 Periods	2 Periods	Regularly	3 Hours	3 Hours
Exam Marks	50	50	Each Practical 10 Marks	100	100
Converted to	10	10	10	20	60
Marks	1	0	10	20	60
Tentative Schedule	7 th Week	14 th Week	15 th Week	16 th Week	

Note:

• CA1 and CA2: All the exercises/experiments as per the portions mentioned above should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded will be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

First Cycle : 1,2,3,4 & 5.

Second Cycle : 6,7,8,9 & 10.

SCHEME OF EVALUATION

Part	Description	Marks
А	Aim, Apparatus Required, Formulas	10
В	Tabular Column & Observations	20
С	Calculations & Result	20
	TOTAL MARKS	50

L	Т	Р	С
0	0	4	2

Practical

• CA 3: Practical document should be maintained for every exercise / experiment immediately after completion of the practice. The same should be evaluated for 10 Marks. The total marks awarded should be converted to 10 Marks for the internal assessment. The practical document should be submitted for the Practical Test and End Semester Examination with a bonafide certificate

The details of the documents to be prepared as per the instruction below.

Each exercise observation and calculations should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

This documentation can be carried out in a separate notebook or printed manual or file. The reading and calculations and graph should be written by the student manually.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

• CA 4: All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded should be converted to 20 Marks for the internal assessment.

Part	Description	Marks		
А	Aim & Apparatus Required	10		
В	Formulas, Explanations, Tabular Column	20		
C	Observations & Reading Taken	20		
D	Calculations	20		
Е	Result	20		
F	Viva voce	10		
	TOTAL MARKS			

SCHEME OF EVALUATION

Practical

Syllabus contents

Chapter I	WATER HARDNESS ASSESSMENT				
Introduction to wat	er hardness and its types - Methods for estimating removal efficiency of				
temporary hardness - Techniques for estimating removal efficiency of permanent hardness -					
Practical applications and case studies.					
Ex. 1	Estimate the removal efficiency of temporary hardness.	12			
Ex. 2	Estimate the removal efficiency of permanent hardness.				
Chapter II	WATER QUALITY ANALYSIS				
Understanding diss	olved oxygen and its importance - Estimation methods for dissolved				
oxygen levels - Intro	oduction to biochemical oxygen demand (BOD) and its significance - BOD				
estimation techniqu	es - Overview of chemical oxygen demand (COD) and its measurement -				
COD estimation me	ethods – Applications.				
Ex. 3	Estimate the amount of dissolved oxygen in a given effluent sample.	18			
Ex. 4	Estimate the BOD of a given effluent sample.				
Ex. 5	Estimate the COD of a given effluent sample.				
Chapter III	REMOVAL EFFICIENCY ANALYSIS				
Principles of percen	ntage removal analysis - Calculation methods for percentage removal of				
BOD - Calculation	methods for percentage removal of COD - Case studies and real-world				
applications		12			
Ex. 6	Estimate the percentage removal of BOD.	12			
Ex. 7	Estimate the percentage removal of COD.				
Chapter IV	HEAVY METAL ANALYSIS				
Introduction to hea	vy metal contamination in water - Estimation methods for hexavalent				
chromium content - Techniques for assessing percentage removal of chromium - Safety					
precautions and laboratory practices.					

1076235523	ENVI
Practical	

ENVIRONMENTAL ENGINEERINGB LAB

L	Т	Р	С
0	0	4	2

Ex. 8	Estimate the amount of hexavalent chromium in a given sample.		
Ex. 9	Estimate the percentage removal of chromium from a given sample.		
Chapter V	ADSORPTION PROCESS		
Fundamentals of adsorption in water treatment - Adsorption mechanisms and factors affecting efficiency - Estimation methods for color removal efficiency - Hands-on experimentation and analysis - Future trends and advancements in adsorption technology.			
Ex. 10	Estimate the color removal of a given effluent water by adsorption.		
	Total Hours	60	

END SEMESTER EXAMINATION – PRACTICAL EXAM.

Note:

- The Practical document prepared by the student should be submitted with a Bonafide Certificate.
- All the exercises have to completed, any one exercise will be given for examination.
- Practical observation note book is sufficient and no need of separate practical record note book. Submission of Practical observation note book to model practical exam and end semester practical exam is mandatory.
- All the exercises should be given in the question paper. The student is allowed to select by lot or question paper issued by the DOTE Exam section shall be used.

Practical

DETAILED ALLOCATION OF MARKS

Part	Description	Marks
А	Aim & Apparatus Required	10
В	Formulas, Explanations, Tabular Column	20
С	Observations & Reading Taken	20
D	Calculations	20
Е	Result	20
F	Viva voce	10
	100	

Equipment / Facilities required to conduct the Practical Portions:

S.No.	Name of the Equipment / Facilities required	Quantity Required
1	Burette 50 mL	10 Nos.
2	Pipette 20 mL	10 Nos.
3	Conical flask 250 mL	10 Nos.
4	Burette Stand with clamp	10 Nos.
5	Round bottom flask	2 Nos.
6	Funnel	5 Nos.
7	Measuring Jar	5 Nos.

Theory

Introduction:

This subject equips students with a strong understanding of various thermodynamic systems and the application of the First and Second Laws of Thermodynamics in different processes. In process industries, raw materials undergo processing to produce various products. The components in raw materials combine in definite proportions. Understanding the chemical kinetics of reactions and the working principles of industrial reactors is crucial. Thus, knowledge of reaction engineering and thermodynamics is essential for the success of a chemical engineer.

Course Objective:

- To develop an understanding of thermodynamic systems.
- To enable the students to use thermodynamics concepts in chemical engineering applications.
- To provide an overview of chemical reaction engineering.

Course Outcomes:

After successful completion of this course, the students should be able to:

- **CO1:** Understand thermodynamic terminologies, processes, properties, and the First Law of Thermodynamics to solve simple problems and apply them in chemical engineering contexts.
- **CO2:** Master the concepts of thermodynamic laws, cycles, efficiencies, and properties, crucial for analyzing and solving problems in chemical engineering processes.
- **CO3:** Gain proficiency in chemical reaction fundamentals, including rates, equilibrium, and factors impacting reaction kinetics, essential for chemical engineering practice.
- **CO4:** Understand the significance, classification, and operation of chemical reactors, with a focus on CSTR, PFTR, and fluidized bed reactors, and apply concepts like space time and space velocity for analysis and comparison.
- **CO5:** Grasp the significance of catalysts in chemical reactions, understand their types, characteristics, deactivation mechanisms, and regeneration methods, essential for chemical engineering practice.

Pre-requisites

Knowledge of basic chemistry.

Theory

CHEMICAL ENGINEERING THERMODYNAMICS AND REACTION ENGINEERING

 L
 T
 P
 C

 3
 0
 0
 3

CO/PO Mapping:

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	2	1	1	2	2
CO2	3	3	2	1	1	1	2
CO3	3	3	2	2	2	1	3
CO4	3	3	2	2	2	2	3
CO5	3	3	2	2	2	2	3

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- It is advised that teachers take steps to pique pupils' attention and boost their learning confidence.
- To help students learn and appreciate numerous concepts and principles in each area, teachers should provide examples from daily life, realistic situations and real- world engineering and technological applications.
- The demonstration can make the subject exciting and foster in the students a scientific mindset. Student activities should be planned on all the topics.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome-based and employability-based.
- All demonstrations/Hand-on practices are under a simulated environment (may be followed by a real environment as far as possible).

Theory

CHEMICAL ENGINEERING THERMODYNAMICS AND REACTION ENGINEERING

Assessment Methodology:

		marks)	End Semester		
	CA1	CA2	CA3	CA4	Examination (60 marks)
Mode	Written Test (Unit I & II)	Written Test (Unit III & IV)	Quiz MCQ (Online / Offline)	Model Examination	Written Examination
Duration	2 Periods	2 Periods	1 Hour	3 Hours	3 Hours
Exam Marks	50	50	60	100	100
Convertedto	15	15	5	20	60
Marks	15		5	20	60
Tentative Schedule	6 th Week	12 th Week	13-14 th Week	16 th Week	

Note:

CA1 and CA2: Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

Answer five questions (5 X 10 Marks = 50 Marks).

Eight questions will be asked; students should write five questions. Each unit four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

CA3: 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every students (Online/Offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment. **CA4:** Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

Question Pattern:

Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Syllabus contents

Unit I	PROPERTIES OF SYSTEM AND FIRST LAW OF THERMODYNAM	ICS	
Terminologies in	Thermodynamics- System and surroundings- open system, closed system, and		
isolated system	- Thermodynamic process- Isothermal process, Isobaric process, Isochoric		
process, adiabati	c process and cyclic process (definitions only).		
Properties of a	Properties of a system-Extensive properties and Intensive properties with examples-state		
function and path function-comparison between reversible process and irreversible process-			
Internal energy a	nd Enthalpy - First law of Thermodynamics – Simple problems in First law of		
Thermodynamic	s.		
Unit II	SECOND LAW OF THERMODYNAMICS & THERMODYNAMIC		
PROPETIES			
	PROPETIES		
Limitations of Fi	PROPETIES		
Thermal efficien	irst law of Thermodynamics-Heat engine & Thermal efficiency- Heat pump &		
Thermal efficien	irst law of Thermodynamics-Heat engine & Thermal efficiency- Heat pump & hcy- Statement of Second Law of Thermodynamics- Carnot cycle and steps rnot cycle- Efficiency of Carnot cycle- simple problems on Carnot cycle		
Thermal efficier involved in Car efficiency -conce	irst law of Thermodynamics-Heat engine & Thermal efficiency- Heat pump & hcy- Statement of Second Law of Thermodynamics- Carnot cycle and steps rnot cycle- Efficiency of Carnot cycle- simple problems on Carnot cycle	0	
Thermal efficier involved in Car efficiency -conce	irst law of Thermodynamics-Heat engine & Thermal efficiency- Heat pump & acy- Statement of Second Law of Thermodynamics- Carnot cycle and steps rnot cycle- Efficiency of Carnot cycle- simple problems on Carnot cycle ept of Entropy.	9	
Thermal efficier involved in Car efficiency -conce Third law of T significance.	irst law of Thermodynamics-Heat engine & Thermal efficiency- Heat pump & acy- Statement of Second Law of Thermodynamics- Carnot cycle and steps rnot cycle- Efficiency of Carnot cycle- simple problems on Carnot cycle ept of Entropy.	9	

significance.

Theory

CHEMICAL ENGINEERING THERMODYNAMICS AND REACTION ENGINEERING

 L
 T
 P
 C

 3
 0
 0
 3

Unit III	CHEMICAL KINETICS			
Chemical reaction	on- classification of chemical reactions- Definitions of reaction rate- elementary			
and non-element	tary reactions- Molecularity and order of a reaction - Rate law, rate constant and			
units of rate con	stant – Fractional conversion.			
Effect of temper	ature on reaction rate- Activation energy- Arrhenius equation- simple problem			
in Arrhenius equ	nation –Determination of the rate	9		
Chemical equilibrium and equilibrium constant- importance of thermodynamics in chemical				
reactions- Feasi	bility of a chemical reaction-Factors influencing the rate of reactions- ratio of			
reactants, preser	ace of inert gas, pressure and temperature.			
Unit IV	CHEMICAL REACTORS			
Importance of o	chemical reactors in chemical industry- classification of chemical reactors-			
construction, op	eration and application of Continuous Stirred Tank Reactor (CSTR) and Plug			
Flow Tubular R	eactor (PFTR) and Fluidized bed reactors.	9		
Concept of Space	time and space velocity- simple problems- comparison of reactors			
Unit V	SOLID CATALYST			
Catalyst- Homog	genous and heterogeneous catalyst – Role of catalyst in chemical reactions-List			
the important ca	atalysts used in various industrial process. Brief description about inhibitors,			
poisons and pro-	moters.			
Specific charact	eristics of solid catalysts- Activity, Kindling point, Solid density, specificity,	9		
Surface area and Porosity.				
Catalyst deactive	vation- Deactivation by thermal degradation and sintering-Deactivation by			
poisoning- meth	ods of catalyst regeneration.			
	TOTAL HOURS	45		

Text and Reference Books:

- Unit Operations of Chemical Engineering W.L. McCabe and J.C. Smith 6th Edition McGraw Hill Book Co. Singapore - 2001.
- 2. Introduction to chemical Engineering W.L. Badger and J.T. Banchero Tata McGraw Hill Publishing Co. Ltd. New Delhi 1997.
- 3. Unit Operations –I K A Gavhane Nirali Publications 2011.
- Ghoshal, Sanyal and Dutta Introduction to chemical Engineering 1st Edition Tata McGraw Hill Publishing Co.Ltd. New Delhi - 2004.

Web-based/Online Resources

- <u>https://www.essentialchemicalindustry.org</u>
- <u>https://learncheme.com/</u>
- <u>https://learncheme.com/screencasts/thermodynamics/</u>
- <u>https://onlinecourses.nptel.ac.in/noc22_ch22/</u>
- <u>https://www.classcentral.com/course/swayam-chemical-engineering-thermodynamics-12898</u>

END SEMESTER QUESTION PATTERN - THEORY EXAM

Duration : 3 Hrs

Max. Marks : 100

Note: Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Instruction to the Question Setters:

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

L	Т	Р	С
3	0	0	3

Introduction:

The agriculture sector plays a crucial role in the Indian economy, and chemical fertilizers are indispensable for ensuring good crop yields. Understanding the intricate link between chemistry and the chemical fertilizer industry is vital for chemical engineers. Therefore, it is essential to provide students with a comprehensive and balanced understanding of this relationship.

Course Objective:

- Introduction to chemical fertilizers, including classification and applications.
- Production methods and characteristics of nitrogen-based fertilizers.
- Manufacturing processes and types of complex fertilizers, including NPK blends and biofertilizers.

Course Outcomes:

After successful completion of this course, the students should be able to:

A comprehensive overview of the knowledge and skills that students will gain from studying

CO1: fertilizers and their production, with a focus on both theoretical understanding and practical application in agricultural contexts.

To overview of the knowledge and skills that students will gain from studying fertilizers and

CO2: their production, with a focus on both theoretical understanding and practical application in agricultural contexts.

Understanding phosphatic fertilizers, their production methods, characteristics, and

- **CO3:** application in agricultural practices, emphasizing both theoretical knowledge and practical skills essential for sustainable agriculture.
 - A comprehensive understanding of potash fertilizers, their production methods,
- **CO4:** characteristics, and application in agricultural practices, focusing on theoretical knowledge and practical skills essential for sustainable agriculture.

Provide a comprehensive understanding of advanced fertilizers, including complex fertilizers

CO5: and biofertilizers, focusing on theoretical knowledge and practical skills essential for sustainable agricultural practices.

Pre-requisites:

Knowledge of basic Chemistry.

Theory

L	Т	Р	С
3	0	0	3

CO/PO Mapping:

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- It is advised that teachers take steps to pique pupils' attention and boost their learning confidence.
- To help students learn and appreciate numerous concepts and principles in each area, teachers should provide examples from daily life, realistic situations and real- world engineering and technological applications.
- The demonstration can make the subject exciting and foster in the students a scientific mindset. Student activities should be planned on all the topics.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome-based and employability-based.
- All demonstrations/Hand-on practices are under a simulated environment (may be followed by a real environment as far as possible).

L	Т	Р	С
3	0	0	3

Assessment Methodology:

		marks)	End Semester		
	CA1	CA2	CA3	CA4	Examination (60 marks)
Mode	Written Test (Unit I & II)	Written Test (Unit III & IV)	Quiz MCQ (Online / Offline)	Model Examination	Written Examination
Duration	2 Periods	2 Periods	1 Hour	3 Hours	3 Hours
Exam Marks	50	50	60	100	100
Convertedto	15	15	5	20	60
Marks	15		5	20	60
Tentative Schedule	6 th Week	12 th Week	13-14 th Week	16 th Week	

Note:

CA1 and CA2: Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

Answer five questions (5 X 10 Marks = 50 Marks).

Eight questions will be asked; students should write five questions. Each unit four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

CA3: 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every students (Online/Offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment.

CA4: Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

L	Т	Р	С
3	0	0	3

Question Pattern:

Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Syllabus contents

Unit I	OVERVIEW OF FERTILIZERS			
Chemical Ferti	lizers, Classification of Fertilizers, Role of essential elements in plant			
growth, Macro	nutrients elements and Micro nutrients elements, Applications of fertilizers			
considering nu	trients. Feed stock and raw materials for Nitrogenous, Phosphatic and			
Potassic fertiliz	zers, Acid used for production of Fertilizer - Manufacture methods -	9		
Product charact	Product characteristics and application of Nitric acid, Sulphuric acid and Phosphoric acid.			
Unit II	NITROGENOUS FERTILIZERS			
Nitrogen sourc	es - Manufacture, Characteristics and Application of Ammonia, Methods			
of Production,	Characteristics and storage and handling specifications of various Nitrogen	9		
fertilizer such as Urea, Ammonium Sulphate, Ammonium Nitrate, Ammonium Chloride.				
Unit III	PHOSPHATIC FERTILIZERS			
Phosphatic fert	ilizers, Raw materials, Classification of Phosphatic Fertilizer, Methods of			
Production, Ch	aracteristics and storage and handling specifications of Various Phosphatic			
fertilizer - Sing	le super Phosphate, Triple super Phosphate, Mano Ammonium Phosphate,	9		
Diammonium I	Phosphate, Ammounium Poly Phosphate.			
Unit IV	POTASH FERTILIZERS			
Introduction of	Potash fertilizers, Raw material for Potash fertilizer, Muriate of Potash -			
raw materials - Various methods of production and product characteristics of Muriate				
Potash, Potassium sulphate – Raw materials – Various methods of production and Product				
characteristics,	Potassium Nitrate – Raw materials - Methods of Production, Specification,			
Characteristics				
Introduction of raw materials Potash, Potassi characteristics,	Potash fertilizers, Raw material for Potash fertilizer, Muriate of Potash – – Various methods of production and product characteristics of Muriate um sulphate – Raw materials – Various methods of production and Product Potassium Nitrate – Raw materials - Methods of Production, Specification,	9		

Unit V	COMPLEX, MIXED AND BIO FERTILIZERS	
Introduction of G	Complex Fertilizers – Raw materials – Various types of Complex fertilizers	
– Ammonium P	hosphate Sulphate - Raw materials - Methods of production - Product	
characteristics -	Urea Ammonium Phosphate - Raw materials - Manufacture method -	
Specification -	NPK - Raw materials - Methods of production. Introduction of Mixed	9
Fertilizers - Mar	nufacture methods. Biofertilizers, Types of Biofertilizers, Nitrogen fixing,	
Biofertilizers Ph	osphate solubilizing Biofertilizers, Preparation of a Biofertilizers.	
	TOTAL HOURS	45

Text and Reference Books:

- 1. Hand book of Fertilizer Association of India, New Delhi 1998.
- 2. Hand book of Fertilizer Technology Fertilizer Association of India, New Delhi 1977.
- 3. Chemistry and Technology of Fertilizers Slack A.V Interscience, New York 1967.
- 4. Dryden's Outliness of Chemical Technology M. Gopala Rao Marshall Sittig 3rd Edition Edited and Reprinted by East-West Press 2016.
- 5. Shreve's Chemical Process Industries Austin, G.T 5th Edition Tata Mc Graw Hill 2017.
- Chemical Technology, Volume I & II Pandey & Shukla 2nd Edition Vanis Books Company -2018.
- 7. Bio fertilizers in Agriculture Subba Rai N.S Oxford & IBH Publishing Company 1982.
- 8. Commercial Fertilizers Collings G H 5th Edition McGraw Hill, New York 1955.
- 9. Chemistry and Technology of Fertilizers Slacks A V Interscience, New York 1966.
- 10. Fertilizer Technology and Management Brahma Mishra IK International Publishing House Private Limited, New Delhi, India.

L	Т	Р	С
3	0	0	3

Web-based/Online Resources

- <u>https://www.essentialchemicalindustry.org</u>
- <u>https://onlinecourses.nptel.ac.in/noc22_ag14/preview</u>
- <u>https://www.itecgoi.in/uploadfolder/1510883541753_Annexure_C_Certificate_Course_in_Fertiliz</u> <u>er_Technology.pdf</u>
- <u>https://fertiliser-society.org/training-and-other-resources/</u>
- <u>https://www.fertilizer.org/</u>
- https://archive.nptel.ac.in/courses/103/107/103107086/
- http://acl.digimat.in/nptel/courses/video/126104006/L42.html

END SEMESTER QUESTION PATTERN - THEORY EXAM

Duration : 3 Hrs

Max. Marks : 100

Note: Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Instruction to the Question Setters:

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

[]	Т	Р	С
3	0	0	3

Introduction:

The exponential growth of Engineering and Technology has benefited the mankind with extreme sophistication and comfort. The Petrochemical industry in India is poised for explosive growth in the coming years. Over all chemical engineers could make very important contributions for the improvement and maintenance of the quality of life. The various chapters of Energy Resources and like Energy Production from renewable and non-renewable, global scenario, furnaces and waste water treatment.

Course Objective:

On completion of the units of the syllabus the students must be able:

- Three sources of Conventional Energy Production
- The improvement of the fuel.

Course Outcomes:

After successful completion of this course, the students should be able to:

CO1: Students will grasp various fuel types, including solids, liquids, and gases, with insights into their properties, production methods, and comparative analysis.

Students will learn about biomass, its sources, estimation methods, and conversion

- **CO2:** processes, including thermochemical, biological, and chemical methods, for biofuel production and utilization.
- **CO3:** Students will understand solar, wind, and ocean energy systems, including technologies, applications, and their significance in renewable energy solutions.

Students will comprehend furnace systems, including classifications, fuel economy

- **CO4:** factors, waste heat utilization, and recuperation techniques, for enhanced energy efficiency.
- **CO5:** Students will learn how to save energy, manage resources efficiently, conduct energy audits, and improve thermal energy management.

Pre-requisites:

Knowledge of Chemistry.

Theory

L	Т	Р	С
3	0	0	3

CO/PO Mapping:

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	2	2	3	2	3
CO2	3	3	2	2	3	2	3
CO3	3	3	3	2	3	2	3
CO4	3	3	2	3	3	2	3
CO5	3	3	2	3	3	2	3

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- It is advised that teachers take steps to pique pupils' attention and boost their learning confidence.
- To help students learn and appreciate numerous concepts and principles in each area, teachers should provide examples from daily life, realistic situations and real- world engineering and technological applications.
- The demonstration can make the subject exciting and foster in the students a scientific mindset. Student activities should be planned on all the topics.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome-based and employability-based.
- All demonstrations/Hand-on practices are under a simulated environment (maybe followed by a real environment as far as possible).

Theory

Assessment Methodology:

		Continuous Assessment (40 marks)			
	CA1	CA2	CA3	CA4	Examination (60 marks)
Mode	Written Test (Unit I & II)	Written Test (Unit III & IV)	Quiz MCQ (Online / Offline)	Model Examination	Written Examination
Duration	2 Periods	2 Periods	1 Hour	3 Hours	3 Hours
Exam Marks	50	50	60	100	100
Convertedto	15	15	5	20	60
Marks	15		5	20	60
Tentative Schedule	6 th Week	12 th Week	13-14 th Week	16 th Week	

Note:

CA1 and CA2: Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

Answer five questions (5 X 10 Marks = 50 Marks).

Eight questions will be asked; students should write five questions. Each unit four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

CA3: 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every students (Online/Offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment.

CA4: Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

L	Т	Р	С
3	0	0	3

Question Pattern:

Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Syllabus contents

Unit I	ENERGY PRODUCTION		
Solid fuels	- Characterization of coal - Grindability Index - Pulverization – Carbonization of coal		
- Liquid fu	els - types improving. Octane Number by blending and reforming (principles only) -	9	
benzol - Po	ower alcohol. Gaseous fuels - types - production of CNG and LNG - comparative	-	
study of so	lid, liquid and gaseous fuel.		
Unit II	BIOMASS ENERGY		
Biomass or	igin - Resources - Biomass estimation. Thermochemical conversion - Biological		
conversion,	Chemical conversion – Hydrolysis & hydrogenation, solvolysis, bio crude, biodiesel	9	
power gene	ration gasifier, biogas, integrated gasification.		
Unit III	RENEWABLE ENERGY RESOURCES		
Solar ener	gy, solar thermal systems, flat plate collectors, focusing collectors, solar distillation,		
solar drye	rs, solar pond, solar thermal power generation, solar energy application in India. Wind		
energy, types of windmills, types of wind rotors, wind electric power generation, wind power in			
India. Oce	an wave energy conversion, ocean thermal energy conversion, tidal energy conversion.		
Unit IV	FURNACE		
Introductio	n – Broad classification of furnace – Muffle furnace – Fuel economy of furnace –		
Detailed st	udy of factors affecting fuel economy in the furnace – use of waste heat as a secondary	9	
heat source	e – Recuperation – Radiation and convection recuperation – Regenerator.		
Unit V	ENERGY CONSERVATION		
Energy con	servation - Act; Energy management importance, duties and responsibilities; Energy	9	
audit – Types methodology, reports, instruments. Benchmalcing and energy performance,			
material an	d energy balance, thermal energy management.		
	TOTAL HOURS	45	

Text and Reference Books:

- 1. Elements of Fuels, Furnaces and Refractories Gupta O.P 4th Edition Khanna Publishers 1989.
- Renewable Energy Technologies: A Practical Guide For Beginners Chetan Singh Solanki PHI Learning Pvt. Limited - 2008.
- 3. Wastewater Engineering Metcalf & Eddy Tata McGraw Hill 2002.
- 4. Energy Technology Rao, S. and Parulekar, B.B Khanna Publishers 2005.
- 5. Non-conventional Energy Sources Rai, G.D Khanna Publishers, New Delhi 1984.
- 6. Power Plant Engineering Nagpal, G.R Khanna Publishers 2008.
- 7. Energy Management Paul W.O'Callaghan McGraw Hill 1993.
- 8. Alternate Energy Sources Nejat Vezirog IT McGraw Hill, New York 1983.
- Handbook of Energy Audit Albert Thumann, P.E., C.E.M & William J Younger C.E.M 7th Edition - Faiment Press - 2008.

Web-based/Online Resources

- <u>https://www.fertilizer.org/</u>
- <u>https://onlinecourses.nptel.ac.in/noc22_ag14/preview</u>
- https://archive.nptel.ac.in/courses/103/107/103107086/
- http://acl.digimat.in/nptel/courses/video/126104006/L42.html
- https://fertiliser-society.org/training-and-other-resources/
- <u>https://www.essentialchemicalindustry.org</u>

END SEMESTER QUESTION PATTERN - THEORY EXAM

Duration : 3 Hrs

Max. Marks : 100

Note: Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Instruction to the Question Setters:

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Introduction:

The exponential growth of Engineering and Technology has benefited the mankind with extreme sophistication and comfort. The Petrochemical industry in India is poised for explosive growth in the coming years. Over all chemical engineers could make very important contributions for the improvement and maintenance of the quality of life. The various chapters of Energy Resources and like Energy Production from renewable and non-renewable, global scenario, furnaces and waste water treatment.

Course Objective:

On completion of the units of the syllabus the students must be able to:.

- Demonstrating a thorough grasp of chemical processing principles, including synthesis, separation, and purification techniques.
- Ability to apply theoretical knowledge to real-world scenarios, optimizing processes for efficiency and yield.
- Prioritizing safety protocols and compliance with industry regulations to minimize risks and ensure a safe working environment.

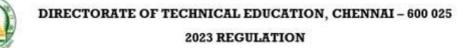
Course Outcomes:

After successful completion of this course, the students should be able to:

Grasp the principles and importance of key chemical manufacturing processes utilized in

CO1: various industries, such as soda ash, caustic soda, hydrogen, Sulphuric acid, and hydrochloric acid production.

Understand the concept of wood pulp production, paper manufacturing, and sugar


CO2: manufacturing fundamentals, including pulping methods, paper production steps, and sugar cane juice extraction unit operations.

To grasp the manufacturing processes of Portland cement and glass, as well as the

- **CO3:** production of paints and Titanium dioxide. They will also understand the types of cement, glass, and paints, along with the significance of PVC in paint formulation.
- **CO4:** To Understand the soap production from fatty acids, production of detergent with various additives through various finishing processes.

To empower knowledge on polymer classification methods, production, and applications

CO5: of polyester, nylon 6.6, synthetic polymers like butadiene rubber, styrene butadiene rubber, and ABS.

L	Т	Р	С
3	1	0	4

Pre-requisites:

Knowledge of Chemical Processes.

CO/PO Mapping:

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- It is advised that teachers take steps to pique pupils' attention and boost their learning confidence.
- To help students learn and appreciate numerous concepts and principles in each area, teachers should provide examples from daily life, realistic situations and real- world engineering and technological applications.
- The demonstration can make the subject exciting and foster in the students a scientific mindset. Student activities should be planned on all the topics.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome-based and employability-based.
- All demonstrations/Hand-on practices are under a simulated environment (may be followed by a real environment as far as possible).

Assessment Methodology:

		Continuous Assessment (40 marks)			
	CA1	CA2	CA3	CA4	Examination (60 marks)
Mode	Written Test (Unit I & II)	Written Test (Unit III & IV)	Quiz MCQ (Online / Offline)	Model Examination	Written Examination
Duration	2 Periods	2 Periods	1 Hour	3 Hours	3 Hours
Exam Marks	50	50	60	100	100
Convertedto	15	15	5	20	60
Marks	15		5	20	60
Tentative Schedule	6 th Week	12 th Week	13-14 th Week	16 th Week	

Note:

CA1 and CA2: Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

Answer five questions (5 X 10 Marks = 50 Marks).

Eight questions will be asked; students should write five questions. Each unit four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

CA3: 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every students (Online/Offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment.

CA4: Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

L	Т	Р	С
3	1	0	4

Question Pattern:

Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Syllabus contents

Unit I CHLORO ALKALI AND ACID INDUSTRIES				
Manufactu	re of Soda Ash by Solvay's Process, Manufacture of caustic Soda			
Compariso	n of caustic soda by membrane, diaphragm and mercury cell process,	12		
Manufactu	re of Hydrogen.			
Sulphuric acid manufacture by DCDA process and Contact Process, Manufacture of				
Hydrochlor	ic acid, and its Properties and uses.			
Unit II PAPER AND SUGAR TECHNOLOGY				
Wood pulp- constituents of pulp -Types of pulping - Bleaching -Recovery of black liquor-				
kraft or sulphate pulp process -Manufacture of Paper- steps involve such as beating ,refining,				
filling, sizin	g and coloring.			
Sources of s	sugar-types of sugar-structure and properties of sugar- Composition of cane juice			
-Terminolo	gy used in sugar manufacturing: brix, pol, purity, molasses and bagasse- unit			
operation in	operation involved in extraction of juice from sugar cane.			
Unit III	CEMENT, GLASS AND SURFACE COATINGS			
Manufactur	re of Portland cement by dry process - Types of cement - Raw materials and			
Method of manufacture of Glass - Types of glasses and commercial Glasses - Paint -				
Definition ·	- Constituent of paints - Manufacturing of paints - Definition of PVC (Pigment,			
Volume, an	d Concentration) - Manufacturing procedure of Titanium di Oxide.	12		

PROCESSING OF CHEMICALS

Unit IV DETERGENTS AND SOAP				
Soap & D	etergents – definition –Classification of Soap & Detergent Production of soap			
from fatty	acids- Structure of Detergents, Anionic, Non-Ionic Detergents. Production	12		
with flow diagram - Keryl Benzene sulphonate - Finishing of Detergent - Builders,				
Bleaches and Whiteners, fillers and processing aids, perfumes, corrosion Inhibitors				
Foams Agents, other Additives.				
Unit V	Unit V POLYMERIZATION, SYNTHETIC FIBRES AND RUBBER			
Polymer- cl	assification of polymer- methods of polymerization- addition polymerization and	12		
condensatio	condensation polymerization with examples. Production and uses of – Polyester, Nylon 6.6 -			
Production and uses of - Synthetic Isoprene, Butadiene Rubber, styrene Butadiene rubber -				
ABS rubbe	r.			
	TOTAL HOURS	60		

Text and Reference Books:

- Introduction to chemical Engineering W.L. Badger and J.T. Banchero Tata McGraw Hill Publishing Co. Ltd. New Delhi - 1997.
- Dryden's Outliness of Chemical Technology M. Gopala Rao Marshall Sittig 3rd Edition Edited and Reprinted by East-West Press - 2016.
- 3. Shreve's Chemical Process Industries Austin, G.T 5th Edition Tata Mc Graw Hill 2017.
- Ghoshal, Sanyal and Dutta Introduction to chemical Engineering 1st Edition Tata McGraw Hill Publishing Co.Ltd. New Delhi - 2004.

Web-based/Online Resources

- <u>https://www.essentialchemicalindustry.org</u>
- <u>https://nptel.ac.in/courses/103/106/103106108/</u>
- <u>https://nptel.ac.in/courses/103/107/103107082/</u>
- <u>https://learncheme.com/</u>
- https://link.springer.com/10.1007%2F0-387-23816-6_27
- https://onlinecourses.nptel.ac.in/noc21_ch49/preview
- https://archive.nptel.ac.in/courses/103/106/105106205/

L	Т	Р	С
3	1	0	4

END SEMESTER QUESTION PATTERN - THEORY EXAM

Duration : 3 Hrs

Max. Marks : 100

Note: Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Instruction to the Question Setters:

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Theory

L	Т	Р	С
3	1	0	4

Introduction:

Natural gas engineering, a subset of chemical and petrochemical engineering, involves exploring, extracting, processing, and using natural gas resources efficiently. It combines principles from chemical, petroleum, and mechanical engineering to optimize production and distribution. Students learn drilling, completion, and stimulation techniques, along with gas treatment methods for removing impurities and extracting valuable components. Environmental sustainability is emphasized for responsible resource management.

Course Objective:

On completion of the units of the syllabus the students must be able to:

- Attain proficiency in natural gas exploration, extraction, processing, transportation, storage, and utilization.
- Develop skills in various aspects of natural gas engineering to contribute effectively to the gas industry.
- Gain comprehensive knowledge of natural gas engineering principles and practices.

Course Outcomes:

After successful completion of this course, the students should be able to:

Upon course completion, students will grasp the origin, composition, sources,

CO1: classification, impurities, processing, combustion characteristics, heating value, Wobbe number, and properties, as well as applications of natural gas.

Understanding various equipment types (vertical, horizontal, spherical separators, gravity

CO2: separators) and gas cleaning methods (impingement, filters, scrubbers, electric precipitators) along with their advantages and disadvantages.

Mastering acid gas treating methods and sulphur recovery processes, with detailedCO3: descriptions and flow diagrams for metal oxide, slurry, amine, carbonate washing, methanol-based, and other processes.

1076236212		L	Т	Р	C
Theory	NATURAL GAS ENGINEERING	3	1	0	4

Understanding natural gas dehydration methods, including glycol, solid desiccant, acid gas

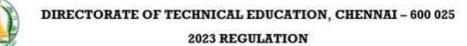
CO4: dehydration, adsorption, and membrane processes, along with water content determination and factors affecting dehydrator performance.

Mastering NGL recovery and fractionation processes, including mechanical refrigeration,

CO5: cryogenic refrigeration, lean oil absorption, solid bed adsorption, membrane separation, and NGL fractionation techniques.

Pre-requisites:

Knowledge of Petroleum Refining.


CO/PO Mapping:

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	2	3	3	2	3
CO2	3	3	3	3	3	2	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- It is advised that teachers take steps to pique pupils' attention and boost their learning confidence.
- To help students learn and appreciate numerous concepts and principles in each area, teachers should provide examples from daily life, realistic situations and real- world engineering and technological applications.
- The demonstration can make the subject exciting and foster in the students a scientific mindset. Student activities should be planned on all the topics.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome-based and employability-based.
- All demonstrations/Hand-on practices are under a simulated environment (may be followed by a real environment as far as possible).

Theory

L	Т	Р	С
3	1	0	4

Assessment Methodology:

		marks)	End Semester		
	CA1	CA2	CA3	CA4	Examination (60 marks)
Mode	Written Test (Unit I & II)	Written Test (Unit III & IV)	Quiz MCQ (Online / Offline)	Model Examination	Written Examination
Duration	2 Periods	2 Periods	1 Hour	3 Hours	3 Hours
Exam Marks	50	50	60	100	100
Convertedto	15	15	5	20	60
Marks	1	5	5	20	60
Tentative Schedule	6 th Week	12 th Week	13-14 th Week	16 th Week	

Note:

CA1 and CA2: Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

Answer five questions (5 X 10 Marks = 50 Marks).

Eight questions will be asked; students should write five questions. Each unit four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

CA3: 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every students (Online/Offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment.

CA4: Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

Theory

L	Т	Р	С
3	1	0	4

Question Pattern:

Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Syllabus contents

Unit I	PROPERTIES AND COMPOSITION OF NATURAL GAS			
Natural g	as origin - Composition of natural gas - Sources of Natural gas -Classification of			
natural ga	as – Impurities in Natural gas – Natural gas processing and products – Combustion			
character	tics of Natural gas - Heating value - Wobbe Number - Properties of natural gas,	12		
Specific g	gravity, Pseudo critical Properties, viscosity - Compressibility factor and chart for			
natural ga	as - Application of Natural gas.			
Unit II	GAS LIQUID SEPARATION			
Gas – Li	quid Separation – Introduction – Separation equipment – types of separators –			
Descripti	on of vertical separator , Advantages and Disadvantages - Description of			
Horizonta	al separator, Advantages and Disadvantages – Description of spherical separator –			
Advantag	es and Disadvantages - Description of gravity separators Factors affecting the	12		
separation	n - Gas cleaning methods - Impingement - Filters - Scrubbers - Electric			
Precipitat	ors.			
Unit III	ACID GAS TREATING OF NATURAL GAS			
Acid gas	removal process description with neat flow diagram: Metal oxide process- Iron			
oxide pro	ces, Zinc oxide process - Slurry process - Chem Sweet process, sulfa check process			
- Amine J	process, Carbonate Washing and Water Washing -Methanol based process -	12		
Other pro	ocess - potassium phosphate process, alkazid process, hot potassium carbonate			
process -	Sulphur recovery process - Claus process - sulphur production by redox process.			
Unit IV	NATURAL GAS DEHYDRATION			
Natural C	as Dehydration: Introduction - Water Content Determination - Process Description			
of Glycol dehydration - Solid desiccant dehydration - Process Description - Acid Gas				
Dehydrat	ion - Other Factors that Affect Glycol Dehydrator Performance - Adsorption	12		
process -	Properties of Industrial Adsorbents for Dehydration – Process description of Two			
bed adsor	ption Dehydration - Nonregenerable Desiccant Processes - membrane process.			

Theory

NATURAL GAS ENGINEERING

Unit V	NGL RECOVERY AND FRACTIONATION	
NGL Rec	overy: Introduction - NGL Recovery Processes - mechanical refrigeration process	
- Choice of Refrigerant - self-refrigeration system - Cryogenic Refrigeration process -		
Ortloff gas subcooled process - Lean Oil Absorption process - solid bed adsorption process		
- Membra	ne Separation Process - NGL fractionation.	
	TOTAL HOURS	60

Text and Reference Books:

- 1. Hand Book of Natural Gas Engineering Katz and Lee Tata McGraw Hill 1990.
- 2. Standard Handbook of Petroleum and Natural Gas Engineering Vol. 2 Lyons, W.C Gulf Professional Publishing, Elsevier Inc 2004.
- 3. Natural Gas Industry-A Review of World Resources and Industrial Applications Katz D.L. and Lee, R.L Butterworth.
- The Natural Gas Industry-A Review of World Resources and Industrial Applications During, M.M
 Butterworth.
- Hand book of Natural Gas Transmission and Processing Saied Mokhatab, William A. Poe, and James G.Speight - 2nd Edition - Gulf Professional Publishing, Elsevier Inc - 2012.

Web-based/Online Resources:

- <u>https://www.essentialchemicalindustry.org</u>
- <u>https://petrowiki.spe.org</u>
- <u>https://www.youtube.com/user/DrStanko/videos</u>
- <u>https://onlinecourses.nptel.ac.in/noc22_ch57/preview</u>
- <u>https://onlinecourses.nptel.ac.in/noc19_ch24/preview</u>

END SEMESTER QUESTION PATTERN - THEORY EXAM

Duration : 3 Hrs

Max. Marks : 100

Note: Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Instruction to the Question Setters:

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Theory

L	Т	Р	С
3	1	0	4

Introduction:

Electrochemical engineering integrates electrochemistry with engineering principles, focusing on electron transfer reactions, cells, and systems for energy and chemical processing. It encompasses design, optimization, and operation of electrochemical technologies in diverse fields like energy storage, corrosion prevention, and water treatment. This multidisciplinary subject is pivotal for sustainable energy solutions and technological advancements across industries.

Course Objective:

On completion of the units of the syllabus the students must be able to:

- Provide a comprehensive understanding of electrochemical principles and processes.
- Explore various applications of electrochemical engineering in different industrial sectors.
- Emphasize the importance of safety and environmental considerations in electrochemical engineering practices.

Course Outcomes:

After successful completion of this course, the students should be able to:

CO1: Acquire comprehension of drying polarization and overpotential phenomena in electrochemical processes for various applications.

Develop understanding of colloidal electrochemistry, including electrochemical properties

CO2: of colloids, coagulation phenomena, electrokinetic processes, and applications in various fields.

Attain proficiency in electroactive layers and modified electrodes, encompassing various

- **CO3:** types of modifications, characterization techniques, and understanding of electrochemical behavior at modified interfaces.
- **CO4:** Acquire expertise in chemically modifying electrodes and understanding their properties, facilitating advanced electrochemical applications.

Develop comprehensive understanding of electrolytic production of inorganic chemicals,

CO5: including principles, reaction mechanisms, and industrial cell design for various compounds.

Pre-requisites:

Knowledge of basic chemistry and Physics.

ELECTROCHEMICAL ENGINEERING

 L
 T
 P
 C

 3
 1
 0
 4

Theory

CO/PO Mapping:

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	3	3	2	2	3
CO2	3	3	3	3	3	2	3
CO3	3	3	3	3	2	2	3
CO4	3	3	3	3	2	2	3
CO5	3	3	3	3	3	2	3

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- It is advised that teachers take steps to pique pupils' attention and boost their learning confidence.
- To help students learn and appreciate numerous concepts and principles in each area, teachers should provide examples from daily life, realistic situations and real- world engineering and technological applications.
- The demonstration can make the subject exciting and foster in the students a scientific mindset. Student activities should be planned on all the topics.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome-based and employability-based.
- All demonstrations/Hand-on practices are under a simulated environment (may be followed by a real environment as far as possible).

ELECTROCHEMICAL ENGINEERING

L	Т	Р	С
3	1	0	4

Theory

Assessment Methodology:

	Continuous Assessment (40 marks)			End Semester	
	CA1	CA2	CA3	CA4	Examination (60 marks)
Mode	Written Test (Unit I & II)	Written Test (Unit III & IV)	Quiz MCQ (Online / Offline)	Model Examination	Written Examination
Duration	2 Periods	2 Periods	1 Hour	3 Hours	3 Hours
Exam Marks	50	50	60	100	100
Convertedto	15	15	5	20	60
Marks	15		5	20	60
Tentative Schedule	6 th Week	12 th Week	13-14 th Week	16 th Week	

Note:

CA1 and CA2: Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

Answer five questions (5 X 10 Marks = 50 Marks).

Eight questions will be asked; students should write five questions. Each unit four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

CA3: 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every students (Online/Offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment. **CA4:** Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

Question Pattern:

Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Syllabus contents

Unit I	DRYING POLARISATION AND OVER POTENTIAL		
Electrolytic	polarization, Dissolution and Decomposition potential, Overvoltage -		
hydrogenand oxygen overvoltage, applications, Polarography – principles, diffusion layer,			
limiting current density, polarographic circuit, dropping mercury electrode, merits &			
demerits, s	supporting electrolyte, current maxima, polarograms, half wave potential,		
diffusion cu	irrent, applications.		
Unit II	COLLOIDAL ELECTROCHEMISTRTY		
Electrocher	nical properties of colloids - Charge on colloidal particles, Electrical Double		
Layer, Coag	Layer, Coagulation of colloidal sols, Electro kinetic phenomena - Electro-Osmosis -		
Determination of zeta potential, Electrophoresis – sedimentation potential (Dorn effect),			
Determination of colloidal particle size, Surfactant, Emulsion, Emulsifiers, gels -			
Application	18		
Unit III	ELECTROACTIVE LAYERS AND MODIFIED ELECTRODES		
Chemically	modified electrodes, Types and methods of modification - chemisorption,		
covalentbond formation, polymer film coatings, inorganic materials, Langmuir-Blodgett			
(LB) methods, properties of the modified electrodes, electrochemistry at monolayer and			
multilayer modified electrodes, characterization of modified electrodes.			

ELECTROCHEMICAL ENGINEERING

Theory

Unit IV	ELECTROCHEMICAL TECHNIQUES	
Ion selectiv	e electrodes - Principles of potentiometry and amperometry- determination of	
dissolved oxygen - effect of sweep rate-analysis of cyclic voltammograms. Potential step		
method (chronoamperometry) under diffusion control derivation of Cottrell equation for a		
planar and spherical electrode- significance of spherical diffusion- principles of scanning		
probe techn	iques-STM-AFM and SECM – working principles of electrochemistry	
Unit V	ELECTROLYTIC PRODUCTION OF IN-ORGANIC CHEMICALS	
Electrolytic	production of sodium hypochlorite, sodium and potassium chlorates, bromates	
andiodates. Sodium, Potassium, and ammonium persulphates, hydrogen peroxide, potassium		
permanganate, cuprous oxide and manganese dioxide - Basic principles, reaction		
mechanisms, effect of operating variables, cell design and operating characteristics of		
industrial co	ells.	
	TOTAL HOURS	60

Text and Reference Books:

- Electrochemical methods Fundamentals and applications Bard and Faulkner 2nd Edition John Wiley & Sons publications - 2000.
- 2. Electrochemical reaction engineering Scott Academic Press Inc 2006.

Web-based/Online Resources:

- <u>https://www.essentialchemicalindustry.org</u>
- <u>https://www.cecri.res.in/</u>
- https://chemistry-europe.onlinelibrary.wiley.com/journal/2196040X
- <u>https://www.electrochem.org/</u>

L	Т	Р	С
3	1	0	4

END SEMESTER QUESTION PATTERN - THEORY EXAM

Duration : 3 Hrs

Max. Marks : 100

Note: Answer ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Instruction to the Question Setters:

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

